2nd Sem Computer Application

Introduction to C:

C is a general-purpose, high-level language that was originally developed by Dennis M. Ritchie to
develop the UNIX operating system at Bell Labs. C was originally first implemented on the DEC PDP-11
computer in 1972.

In 1978, Brian Kernighan and Dennis Ritchie produced the first publicly available description of C, now
known as the K&R standard.

The UNIX operating system, the C compiler, and essentially all UNIX application programs have been
written in C. C has now become a widely used professional language for various reasons -

e Easytolearn

e Structured language

e [t produces efficient programs

e It can handle low-level activities

e Itcan be compiled on a variety of computer platforms

Facts about C

e (Cwas invented to write an operating system called UNIX.

¢ (isasuccessor of B language which was introduced around the early 1970s.

¢ The language was formalized in 1988 by the American National Standard Institute (ANSI).
¢ The UNIX OS was totally written in C.

¢ Today C is the most widely used and popular System Programming Language.

¢ Most of the state-of-the-art software have been implemented using C.

¢ Today's most popular Linux OS and RDBMS MySQL have been written in C.

Why use C?

C was initially used for system development work, particularly the programs that make-up the operating
system. C was adopted as a system development language because it produces code that runs nearly as
fast as the code written in assembly language. Some examples of the use of C might be -

e Operating Systems

e Language Compilers

e Assemblers

e Text Editors

e Print Spoolers

e Network Drivers

e Modern Programs

e Databases

e Language Interpreters
e Utilities

C Programs

A C program can vary from 3 lines to millions of lines and it should be written into one or more text files

with extension ".c"; for example, hello.c. You can use "vi", "vim" or any other text editor to write your C
program into a file.

This tutorial assumes that you know how to edit a text file and how to write source code inside a
program file.

Hello World Example

A C program basically consists of the following parts -

e Preprocessor Commands
e Functions

e Variables

e Statements & Expressions

e Comments

Let us look at a simple code that would print the words "Hello World" -

#include <stdio.h>

int main() {
/* my first program in C */
printf("Hello, World! \n");

return 0O;

}

Let us take a look at the various parts of the above program -

e The first line of the program #include <stdio.h> is a preprocessor command, which tells a C compiler to include
stdio.h file before going to actual compilation.

¢ The next line int main() is the main function where the program execution begins.

¢ The next line /*..*/ will be ignored by the compiler and it has been put to add additional comments in the
program. So such lines are called comments in the program.

e The next line printf{..) is another function available in C which causes the message "Hello, World!" to be
displayed on the screen.

¢ The next line return 0; terminates the main() function and returns the value 0.

Compile and Execute C Program

Let us see how to save the source code in a file, and how to compile and run it. Following are the simple
steps —

¢ Open a text editor and add the above-mentioned code.
e Save the file as hello.c
¢ Open a command prompt and go to the directory where you have saved the file.

e Type gcc hello.c and press enter to compile your code.

e If there are no errors in your code, the command prompt will take you to the next line and would
generate a.out executable file.

e Now, type a.out to execute your program.
* You will see the output "Hello World" printed on the screen.

$ gcc hello.c
$./a.0ut
Hello, World!

Make sure the gcc compiler is in your path and that you are running it in the directory containing the
source file hello.c.

building blocks of the C programming language.

Tokens in C

A C program consists of various tokens and a token is either a keyword, an identifier, a constant, a string
literal, or a symbol. For example, the following C statement consists of five tokens -

printf("Hello, World! \n");

The individual tokens are —

printf
(

)

)

"Hello, World! \n"

Semicolons

In a C program, the semicolon is a statement terminator. That is, each individual statement must be
ended with a semicolon. It indicates the end of one logical entity.

Given below are two different statements -

printf("Hello, World! \n");
return 0;

Comments

Comments are like helping text in your C program and they are ignored by the compiler. They start with
/* and terminate with the characters */ as shown below -

/* my first program in C */

You cannot have comments within comments and they do not occur within a string or character literals.

Identifiers

A C identifier is a name used to identify a variable, function, or any other user-defined item. An identifier

starts with a letter A to Z, a to z, or an underscore '_' followed by zero or more letters, underscores, and
digits (0 to 9).

C does not allow punctuation characters such as @, $, and % within identifiers. C is a case-
sensitive programming language. Thus, Manpower and manpower are two different identifiers in C.
Here are some examples of acceptable identifiers -

mohd zara abc move_name a_123
myname50 _temp j a23b9 retVal

Keywords

The following list shows the reserved words in C. These reserved words may not be used as constants or
variables or any other identifier names.

auto else long switch
break enum register typedef
case extern return union
char float short unsigned
const for signed void
continue goto sizeof volatile
default if static while
do int struct _Packed
double
Whitespace in C

A line containing only whitespace, possibly with a comment, is known as a blank line, and a C compiler
totally ignores it.
Whitespace is the term used in C to describe blanks, tabs, newline characters and comments. Whitespace

separates one part of a statement from another and enables the compiler to identify where one element
in a statement, such as int, ends and the next element begins. Therefore, in the following statement -

int age;

there must be at least one whitespace character (usually a space) between int and age for the compiler
to be able to distinguish them. On the other hand, in the following statement -

fruit = apples + oranges; // get the total fruit

no whitespace characters are necessary between fruit and =, or between = and apples, although you are
free to include some if you wish to increase readability.

4/1/2020

C - Data Types - Tutorialspoint

C - Data Types

Data types in ¢ refer to an extensive system used for declaring variables or functions of different types.
The type of a variable determines how much space it occupies in storage and how the bit pattern stored is
interpreted.

The types in C can be classified as follows -

Sr.No.

1

Types & Description

Basic Types

They are arithmetic types and are further classified into: (a) integer types and (b) floating-point
types.

Enumerated types

They are again arithmetic types and they are used to define variables that can only assign
certain discrete integer values throughout the program.

The type void

The type specifier void indicates that no value is available.

Derived types

They include (a) Pointer types, (b) Array types, (c) Structure types, (d) Union types and (e)
Function types.

The array types and structure types are referred collectively as the aggregate types. The type of a
function specifies the type of the function's return value. We will see the basic types in the following
section, where as other types will be covered in the upcoming chapters.

Integer Types

The following table provides the details of standard integer types with their storage sizes and value ranges

https://www.tutorialspoint.com/cprogramming/c_data_types.htm 1/4

4/1/2020

To get the exact size of a type or a variable on a particular platform, you can use the sizeof operator. The
expressions sizeof(type) yields the storage size of the object or type in bytes. Given below is an example
to get the size of various type on a machine using different constant defined in limits.h header file -

Type
char
unsigned char
signed char
int
unsigned int
short
unsigned short
long

unsigned long

#include <stdio.h>
#include <stdlib.h>
#include <limits.h>
#include <float.h>

C - Data Types - Tutorialspoint

Storage size

1 byte
1 byte

1 byte

2 or 4 bytes

2 or 4 bytes

2 bytes
2 bytes
8 bytes

8 bytes

int main(int argc, char** argv) {

}

printf("CHAR_BIT
printf("CHAR_MAX
printf("CHAR_MIN
printf("INT_MAX
printf("INT_MIN
printf("LONG_MAX
printf("LONG_MIN
printf("SCHAR_MAX
printf("SCHAR_MIN
printf("SHRT_MAX
printf("SHRT_MIN
printf("UCHAR_MAX
printf("UINT_MAX
printf("ULONG_MAX
printf("USHRT_MAX

return 0O;

%d\n", CHAR_BIT);
%d\n", CHAR_MAX);
%d\n", CHAR_MIN);
%d\n", INT_MAX);
%d\n", INT_MIN);

%1d\n", (long) LONG_MAX);
%1d\n", (long) LONG_MIN);
%d\n", SCHAR_MAX);
%d\n", SCHAR_MIN);

%d\n", SHRT_MAX);
%d\n", SHRT_MIN);

%d\n", UCHAR_MAX);

Value range

-128 to 127 or 0 to 255

0 to 255

-128 to 127

-32,768 to 32,767 or -2,147,483,648 to 2,147,483,647
0 to 65,535 or 0 to 4,294,967,295

-32,768 to 32,767

0 to 65,535

-9223372036854775808 to 9223372036854775807

0 to 18446744073709551615

%u\n", (unsigned int) UINT_MAX);
%lu\n", (unsigned long) ULONG_MAX);
%d\n", (unsigned short) USHRT_MAX);

https://www.tutorialspoint.com/cprogramming/c_data_types.htm

2/4

4/1/2020

C - Data Types - Tutorialspoint

When you compile and execute the above program, it produces the following result on Linux —

CHAR_BIT 8

CHAR_MAX 127

CHAR_MIN -128

INT_MAX 2147483647

INT_MIN -2147483648

LONG_MAX 9223372036854775807

LONG_MIN -9223372036854775808

SCHAR_MAX 127

SCHAR_MIN -128

SHRT_MAX 32767

SHRT_MIN -32768

UCHAR_MAX 255

UINT_MAX 4294967295

ULONG_MAX 18446744073709551615

USHRT_MAX 65535
Floating-Point Types

The following table provide the details of standard floating-point types with storage sizes and value ranges
and their precision -

Type Storage size Value range Precision
float 4 byte 1.2E-38 to 3.4E+38 6 decimal places
double 8 byte 2.3E-308 to 1.7E+308 15 decimal places
long double 10 byte 3.4E-4932 to 1.1E+4932 19 decimal places
The header file float.h defines macros that allow you to use these values and other details about the

binary representation of real numbers in your programs. The following example prints the storage space
taken by a float type and its range values -

#include
#include
#include
#include

int main(

<stdio.h>
<stdlib.h>
<limits.h>
<float.h>

int argc, char** argv) {

printf("Storage size for float : %d \n", sizeof(float));

printf("FLT_MAX : %g\n", (float) FLT_MAX);
printf("FLT_MIN : %g\n", (float) FLT_MIN);
printf("-FLT_MAX : %g\n", (float) -FLT_MAX);
printf("-FLT_MIN : %g\n", (float) -FLT_MIN);
printf("DBL_MAX : %g\n", (double) DBL_MAX);

https://www.tutorialspoint.com/cprogramming/c_data_types.htm

3/4

4/1/2020 C - Data Types - Tutorialspoint

printf("DBL_MIN : %g\n", (double) DBL_MIN);
printf("-DBL_MAX : %g\n", (double) -DBL_MAX);
printf("Precision value: %d\n", FLT_DIG);

return 0;

When you compile and execute the above program, it produces the following result on Linux -

Storage size for float : 4

FLT_MAX : 3.40282e+38
FLT_MIN : 1.17549e-38
-FLT_MAX : -3.40282e+38
-FLT_MIN : -1.17549e-38
DBL_MAX : 1.79769e+308
DBL_MIN : 2.22507e-308
-DBL_MAX : -1.79769e+308

Precision value: 6

The void Type

The void type specifies that no value is available. It is used in three kinds of situations -
Sr.No. Types & Description

Function returns as void

There are various functions in C which do not return any value or you can say they return void.
A function with no return value has the return type as void. For example, void exit (int

status);

2 Function arguments as void
There are various functions in C which do not accept any parameter. A function with no
parameter can accept a void. For example, int rand(void);

3

Pointers to void

A pointer of type void * represents the address of an object, but not its type. For example, a
memory allocation function void *malloc(size_t size); returns a pointer to void which can be
casted to any data type.

https://www.tutorialspoint.com/cprogramming/c_data_types.htm 4/4

4/1/2020 C - Variables - Tutorialspoint

C - Variables

A variable is nothing but a name given to a storage area that our programs can manipulate. Each variable
in C has a specific type, which determines the size and layout of the variable's memory; the range of
values that can be stored within that memory; and the set of operations that can be applied to the
variable.

The name of a variable can be composed of letters, digits, and the underscore character. It must begin
with either a letter or an underscore. Upper and lowercase letters are distinct because C is case-sensitive.
Based on the basic types explained in the previous chapter, there will be the following basic variable types

Sr.No. Type & Description

char

Typically a single octet(one byte). It is an integer type.

int

The most natural size of integer for the machine.
3 float

A single-precision floating point value.
4 double

A double-precision floating point value.
5

void

Represents the absence of type.

C programming language also allows to define various other types of variables, which we will cover in
subsequent chapters like Enumeration, Pointer, Array, Structure, Union, etc. For this chapter, let us study
only basic variable types.

Variable Definition in C

A variable definition tells the compiler where and how much storage to create for the variable. A variable
definition specifies a data type and contains a list of one or more variables of that type as follows -

https://www.tutorialspoint.com/cprogramming/c_variables.htm 1/4

4/1/2020 C - Variables - Tutorialspoint
type variable list;
Here, type must be a valid C data type including char, w_char, int, float, double, bool, or any user-defined

object; and variable_list may consist of one or more identifier names separated by commas. Some valid
declarations are shown here -

int i, 3, k;
char c, ch;
float f, salary;
double d;

The line int i, j, k; declares and defines the variables i, j, and k; which instruct the compiler to create
variables named i, j and k of type int.

Variables can be initialized (assigned an initial value) in their declaration. The initializer consists of an
equal sign followed by a constant expression as follows —

type variable_name = value;
Some examples are —

extern int d = 3, f = 5; // declaration of d and f.

int d =3, f =25; // definition and initializing d and f.
byte z = 22; // definition and initializes z.
char x = 'x'; // the variable x has the value 'x'.

For definition without an initializer: variables with static storage duration are implicitly initialized with NULL
(all bytes have the value 0); the initial value of all other variables are undefined.

Variable Declaration in C

A variable declaration provides assurance to the compiler that there exists a variable with the given type
and name so that the compiler can proceed for further compilation without requiring the complete detail
about the variable. A variable definition has its meaning at the time of compilation only, the compiler
needs actual variable definition at the time of linking the program.

A variable declaration is useful when you are using multiple files and you define your variable in one of the
files which will be available at the time of linking of the program. You will use the keyword extern to
declare a variable at any place. Though you can declare a variable multiple times in your C program, it
can be defined only once in a file, a function, or a block of code.

Example

Try the following example, where variables have been declared at the top, but they have been defined
and initialized inside the main function -

https://www.tutorialspoint.com/cprogramming/c_variables.htm 2/4

4/1/2020 C - Variables - Tutorialspoint

#include <stdio.h>

// Variable declaration:
extern int a, b;

extern int c;

extern float f;

int main () {
/* variable definition: */
int a, b;
int c;

float f;

/* actual initialization */

a = 10;
b = 20;
cC =a + b;

printf("value of c : %d \n", c);

f = 70.0/3.0;
printf("value of f : %f \n", f);

return 0;

When the above code is compiled and executed, it produces the following result —

value of ¢ : 30
value of f : 23.333334

The same concept applies on function declaration where you provide a function name at the time of its
declaration and its actual definition can be given anywhere else. For example -

// function declaration
int func();

int main() {
// function call

int i = func();

// function definition
int func() {
return 0O;

https://www.tutorialspoint.com/cprogramming/c_variables.htm 3/4

4/1/2020 C - Variables - Tutorialspoint

Lvalues and Rvalues in C

There are two kinds of expressions in C -

. Ivalue - Expressions that refer to a memory location are called "lvalue" expressions. An Ivalue
may appear as either the left-hand or right-hand side of an assignment.

. rvalue — The term rvalue refers to a data value that is stored at some address in memory. An
rvalue is an expression that cannot have a value assigned to it which means an rvalue may
appear on the right-hand side but not on the left-hand side of an assignment.

Variables are Ivalues and so they may appear on the left-hand side of an assignment. Numeric literals are
rvalues and so they may not be assigned and cannot appear on the left-hand side. Take a look at the
following valid and invalid statements -

int g = 20; // valid statement

10 = 20; // invalid statement; would generate compile-time error

https://www.tutorialspoint.com/cprogramming/c_variables.htm 4/4

4/1/2020

C-Co

Constants refer to fixed values that the program may not alter during its execution. These fixed values are

also called literals.

Constants can be of any of the basic data types like an integer constant, a floating constant, a character

constant, or a string literal. There are enume

Constants are treated just like regular variables except that their values cannot be modified after their

definition.

Integer Literals

An integer literal can be a decimal, octal, or hexadecimal constant. A prefix specifies the base or radix: 0x

C - Constants and Literals - Tutorialspoint

nstants and Literals

ration constants as well.

or 0X for hexadecimal, O for octal, and nothing for decimal.

An integer literal can also have a suffix that is a combination of U and L, for unsigned and long,
respectively. The suffix can be uppercase or lowercase and can be in any order.

Here are some examples of integer literals -

212 /* Legal */
215u /* Legal */
OxFeel /* Legal */
078 /* Illegal: 8 is not an octal digit */
032UU /* Illegal: cannot repeat a suffix */

Following are other examples of various types of integer literals —

85 /* decimal */

0213 /* octal */

ox4b /* hexadecimal */
30 /* int */

30u /* unsigned int */
301 /* long */

30ul /* unsigned long */

Floating-point Literals

A floating-point literal has an integer part, a decimal point, a fractional part, and an exponent part. You can

represent floating point literals either in decimal form or exponential form.

While representing decimal form, you must include the decimal point, the exponent, or both; and while
representing exponential form, you must include the integer part, the fractional part, or both. The signed

exponent is introduced by e or E.

https://www.tutorialspoint.com/cprogramming/c_constants.htm

1/4

4/1/2020 C - Constants and Literals - Tutorialspoint

Here are some examples of floating-point literals -

3.14159 /* Legal */

314159E-5L /* Legal */

510E /* Illegal: incomplete exponent */

210f /* Illegal: no decimal or exponent */

.e55 /* Illegal: missing integer or fraction */

Character Constants

Character literals are enclosed in single quotes, e.g., 'x' can be stored in a simple variable of char type.

A character literal can be a plain character (e.g., 'x'), an escape sequence (e.g., \t'), or a universal
character (e.g., "\u02CQ").

There are certain characters in C that represent special meaning when preceded by a backslash for
example, newline (\n) or tab (\t).

« Here, you have a list of such escape sequence codes - v

Following is the example to show a few escape sequence characters -

#include <stdio.h>

int main() {
printf("Hello\tWorld\n\n");

return 0;

When the above code is compiled and executed, it produces the following result —

Hello World

String Literals

String literals or constants are enclosed in double quotes ™. A string contains characters that are similar
to character literals: plain characters, escape sequences, and universal characters.

You can break a long line into multiple lines using string literals and separating them using white spaces.

Here are some examples of string literals. All the three forms are identical strings.
"hello, dear"

"hello, \

dear™

https://www.tutorialspoint.com/cprogramming/c_constants.htm 2/4

4/1/2020 C - Constants and Literals - Tutorialspoint

"hello, " "d" "ear"

Defining Constants

There are two simple ways in C to define constants -
. Using #define preprocessor.
. Using const keyword.

The #define Preprocessor

Given below is the form to use #define preprocessor to define a constant -

#define identifier value

The following example explains it in detail -

#include <stdio.h>
#define LENGTH 10
#define WIDTH 5
#define NEWLINE '\n'’

int main() {
int area;

area = LENGTH * WIDTH;
printf(“"value of area : %d", area);
printf("%c", NEWLINE);

return 0O;

When the above code is compiled and executed, it produces the following result -

value of area : 50

The const Keyword

You can use const prefix to declare constants with a specific type as follows -

const type variable = value;
The following example explains it in detail -

https://www.tutorialspoint.com/cprogramming/c_constants.htm 3/4

4/1/2020

#include <stdio.h>

int main() {
const int LENGTH = 10;
const int WIDTH = 5;
const char NEWLINE = '\n’;
int area;

area = LENGTH * WIDTH;
printf("value of area : %d", area);

printf("%c", NEWLINE);

return 0;

When the above code is compiled and executed, it produces the following result —

value of area : 50

Note that it is a good programming practice to define constants in CAPITALS.

https://www.tutorialspoint.com/cprogramming/c_constants.htm

C - Constants and Literals - Tutorialspoint

4/4

4/1/2020 C - Storage Classes - Tutorialspoint

C - Storage Classes

A storage class defines the scope (visibility) and life-time of variables and/or functions within a C Program.
They precede the type that they modify. We have four different storage classes in a C program -

J auto
» register
. static

. extern

The auto Storage Class

The auto storage class is the default storage class for all local variables.

{
int mount;
auto int month;

The example above defines two variables with in the same storage class. 'auto’ can only be used within
functions, i.e., local variables.

The register Storage Class

The register storage class is used to define local variables that should be stored in a register instead of
RAM. This means that the variable has a maximum size equal to the register size (usually one word) and
can't have the unary '&' operator applied to it (as it does not have a memory location).

{
register int miles;

}

The register should only be used for variables that require quick access such as counters. It should also
be noted that defining 'register’ does not mean that the variable will be stored in a register. It means that it
MIGHT be stored in a register depending on hardware and implementation restrictions.

The static Storage Class

The static storage class instructs the compiler to keep a local variable in existence during the life-time of
the program instead of creating and destroying it each time it comes into and goes out of scope.
Therefore, making local variables static allows them to maintain their values between function calls.

The static modifier may also be applied to global variables. When this is done, it causes that variable's
scope to be restricted to the file in which it is declared.

https://www.tutorialspoint.com/cprogramming/c_storage_classes.htm 113

4/1/2020 C - Storage Classes - Tutorialspoint

In C programming, when static is used on a global variable, it causes only one copy of that member to be
shared by all the objects of its class.

#include <stdio.h>

/* function declaration */
void func(void);

static int count = 5; /* global variable */
main() {
while(count--) {
func();
return 0O;
/* function definition */
void func(void) {

static int i = 5; /* local static variable */
i++;

printf("i is %d and count is %d\n", i, count);

When the above code is compiled and executed, it produces the following result -

and count is
and count is

iis
is

0 N o

is and count is
is 9 and count is

is 10 and count is ©

._..._..._..._..
(S NIRRTV N

The extern Storage Class

The extern storage class is used to give a reference of a global variable that is visible to ALL the program
files. When you use 'extern’, the variable cannot be initialized however, it points the variable name at a
storage location that has been previously defined.

When you have multiple files and you define a global variable or function, which will also be used in other
files, then extern will be used in another file to provide the reference of defined variable or function. Just
for understanding, extern is used to declare a global variable or function in another file.

The extern modifier is most commonly used when there are two or more files sharing the same global
variables or functions as explained below.

https://www.tutorialspoint.com/cprogramming/c_storage_classes.htm 2/3

4/1/2020

First File: main.c

#include <stdio.h>

int count ;
extern void write_extern();

main() {

count = 5;
write_extern();

Second File: support.c

#include <stdio.h>
extern int count;

void write_extern(void) {
printf("count is %d\n", count);

Here, extern is being used to declare count in the second file, where as it has its definition in the first file,

C - Storage Classes - Tutorialspoint

main.c. Now, compile these two files as follows —

$gcc main.c support.c

It will produce the executable program a.out. When this program is executed, it produces the following

result —

count is 5

https://www.tutorialspoint.com/cprogramming/c_storage_classes.htm

3/3

4/1/2020

C - Operators - Tutorialspoint

C - Operators

An operator is a symbol that tells the compiler to perform specific mathematical or logical functions. C
language is rich in built-in operators and provides the following types of operators —

®

@

Arithmetic Operators
Relational Operators
Logical Operators
Bitwise Operators
Assignment Operators

Misc Operators

We will, in this chapter, look into the way each operator works.

Arithmetic Operators

The following table shows all the arithmetic operators supported by the C language. Assume variable A
holds 10 and variable B holds 20 then -

Show Examples

Operator Description

%

++

Adds two operands.

Subtracts second operand from the first.
Multiplies both operands.

Divides numerator by de-numerator.

Modulus Operator and remainder of after an integer
division.

Increment operator increases the integer value by one.

Decrement operator decreases the integer value by one.

Relational Operators

Example
A+B=30
A-B=-10
A*B =200
B/A=2

B%A=0

A++ =11

A-=9

The following table shows all the relational operators supported by C. Assume variable A holds 10 and
variable B holds 20 then -

Show Examples

https://www.tutorialspoint.com/cprogramming/c_operators.htm

1/6

4/1/2020

Operator

C - Operators - Tutorialspoint

Description Example

Checks if the values of two operands are equal or not. If (A ==B) is not true.
yes, then the condition becomes true.

Checks if the values of two operands are equal or not. If the (A != B) is true.
values are not equal, then the condition becomes true.

Checks if the value of left operand is greater than the value (A > B) is not true.
of right operand. If yes, then the condition becomes true.

Checks if the value of left operand is less than the value of (A <B)is true.
right operand. If yes, then the condition becomes true.

Checks if the value of left operand is greater than or equal (A >=B) is not true.
to the value of right operand. If yes, then the condition
becomes true.

Checks if the value of left operand is less than or equal to (A <= B)is true.
the value of right operand. If yes, then the condition
becomes true.

Logical Operators

Following table shows all the logical operators supported by C language. Assume variable A holds 1 and
variable B holds 0, then —

Show Examples

Operator

&&

Description Example

Called Logical AND operator. If both the operands are non- (A && B) is false.
zero, then the condition becomes true.

Called Logical OR Operator. If any of the two operands is (A || B) is true.
non-zero, then the condition becomes true.

Called Logical NOT Operator. It is used to reverse the I(A && B) is true.
logical state of its operand. If a condition is true, then
Logical NOT operator will make it false.

Bitwise Operators

Bitwise operator works on bits and perform bit-by-bit operation. The truth tables for &, |, and * is as follows

https://www.tutorialspoint.com/cprogramming/c_operators.htm 2/6

4/1/2020 C - Operators - Tutorialspoint

p q p&q pPla P*q
0 0 0 0 0
0 1 0 1 1
1 1 1 1 0
1 0 0 1 1

Assume A = 60 and B = 13 in binary format, they will be as follows -
A =0011 1100

B = 0000 1101

A&B = 0000 1100

A|B =0011 1101

A”"B = 0011 0001

~A = 1100 0011

The following table lists the bitwise operators supported by C. Assume variable 'A' holds 60 and variable
'B' holds 13, then -

Show Examples
Operator Description Example

& Binary AND Operator copies a bit to the result if it exists in (A&B)=12,i.e., 0000 1100
both operands.

Binary OR Operator copies a bit if it exists in either (A|B)=61,ie., 0011 1101
operand.
A Binary XOR Operator copies the bit if it is set in one (A~B)=49,i.e., 00110001

operand but not both.

~ Binary One's Complement Operator is unary and has the (~A) =~(60), i.e,. -0111101
effect of 'flipping' bits.

<< Binary Left Shift Operator. The left operands value is moved

A<<2=240i.e, 11110000
left by the number of bits specified by the right operand. e

>> Binary Right Shift Operator. The left operands value is
moved right by the number of bits specified by the right A>>2=15ij.e., 0000 1111
operand.

Assignment Operators

https://www.tutorialspoint.com/cprogramming/c_operators.htm 3/6

4/1/2020

C - Operators - Tutorialspoint

The following table lists the assignment operators supported by the C language -

Show Examples

Operator

<<=

>>=

Description

Simple assignment operator. Assigns values from right side
operands to left side operand

Add AND assignment operator. It adds the right operand to
the left operand and assign the result to the left operand.

Subtract AND assignment operator. It subtracts the right
operand from the left operand and assigns the result to the
left operand.

Multiply AND assignment operator. It multiplies the right
operand with the left operand and assigns the result to the
left operand.

Divide AND assignment operator. It divides the left operand
with the right operand and assigns the result to the left
operand.

Modulus AND assignment operator. It takes modulus using
two operands and assigns the result to the left operand.

Left shift AND assignment operator.

Right shift AND assignment operator.

Bitwise AND assignment operator.

Bitwise exclusive OR and assignment operator.

Bitwise inclusive OR and assignment operator.

Misc Operators ~ sizeof & ternary

Example

C = A + B will assign the value of A
+BtoC

C+=AisequivalenttoC=C +A

C-=AisequivalenttoC=C-A

C*=AisequivalenttoC=C*A

C/=AisequivalenttoC=C/A

C %= Ais equivalenttoC=C % A

C<<=2issameas C=C<<2
C>>=2issameas C=C>>2
C&=2issameas C=C &2
Chr=2issameas C=C"2

Cl=2issameasC=C|2

Besides the operators discussed above, there are a few other important operators including sizeof and ?
: supported by the C Language.

Show Examples

https://www.tutorialspoint.com/cprogramming/c_operators.htm

4/6

4/1/2020 C - Operators - Tutorialspoint

Operator Description Example

sizeof() Returns the size of a variable. sizeof(a), where a is integer, will return 4.

& Returns the address of a variable. &a; returns the actual address of the variable.
* Pointer to a variable. *a;

?: If Condition is true ? then value X : otherwise

Conditional Expression.
P value Y

Operators Precedence in C

Operator precedence determines the grouping of terms in an expression and decides how an expression
is evaluated. Certain operators have higher precedence than others; for example, the multiplication
operator has a higher precedence than the addition operator.

For example, x =7 + 3 * 2; here, x is assigned 13, not 20 because operator * has a higher precedence
than +, so it first gets multiplied with 3*2 and then adds into 7.

Here, operators with the highest precedence appear at the top of the table, those with the lowest appear
at the bottom. Within an expression, higher precedence operators will be evaluated first.

Show Examples

https://www.tutorialspoint.com/cprogramming/c_operators.htm 5/6

4/1/2020

Category
Postfix
Unary

Multiplicative
Additive
Shift
Relational
Equality
Bitwise AND
Bitwise XOR
Bitwise OR
Logical AND
Logical OR
Conditional
Assignment

Comma

C - Operators - Tutorialspoint

Operator

00> ++--
+ -1 ~++ - - (type)* & sizeof

*1 %

<< >>

<<= >>=

= 4= = *= [= Yp=>>= <<= &= = |=

https://www.tutorialspoint.com/cprogramming/c_operators.htm

Associativity
Left to right
Right to left
Left to right
Left to right
Left to right
Left to right
Left to right
Left to right
Left to right
Left to right
Left to right
Left to right
Right to left
Right to left

Left to right

6/6

4/1/2020 C - Decision Making - Tutorialspoint

C - Decision Making

Decision making structures require that the programmer specifies one or more conditions to be evaluated
or tested by the program, along with a statement or statements to be executed if the condition is
determined to be true, and optionally, other statements to be executed if the condition is determined to be
false.

Show below is the general form of a typical decision making structure found in most of the programming
languages -

If condition
is false

If condition
is true

conditional Y
code

C programming language assumes any non-zero and non-null values as true, and if it is either zero or
null, then it is assumed as false value.

C programming language provides the following types of decision making statements.

https://www.tutorialspoint.com/cprogramming/c_decision_making.htm 112

4/1/2020 C - Decision Making - Tutorialspoint
Sr.No. Statement & Description

1 if statement

An if statement consists of a boolean expression followed by one or more statements.

2 if...else statement

An if statement can be followed by an optional else statement, which executes when the
Boolean expression is false.

3 nested if statements

You can use one if or else if statement inside another if or else if statement(s).

4 switch statement

A switch statement allows a variable to be tested for equality against a list of values.

5 nested switch statements

You can use one switch statement inside another switch statement(s).

The ? : Operator

We have covered conditional operator ? : in the previous chapter which can be used to replace if...else
statements. It has the following general form -

Expl ? Exp2 : Exp3;

Where Exp1, Exp2, and Exp3 are expressions. Notice the use and placement of the colon.

The value of a ? expression is determined like this —

. Exp1 is evaluated. If it is true, then Exp2 is evaluated and becomes the value of the entire ?
expression.
. If Exp1 is false, then Exp3 is evaluated and its value becomes the value of the expression.

https://www.tutorialspoint.com/cprogramming/c_decision_making.htm 2/2

4/1/2020 C - Loops - Tutorialspoint

C - Loops

You may encounter situations, when a block of code needs to be executed several number of times. In
general, statements are executed sequentially: The first statement in a function is executed first, followed
by the second, and so on.

Programming languages provide various control structures that allow for more complicated execution
paths.

A loop statement allows us to execute a statement or group of statements multiple times. Given below is
the general form of a loop statement in most of the programming languages -

Conditional Code

If condition
is true

If condition
is false

C programming language provides the following types of loops to handle looping requirements.

https://www.tutorialspoint.com/cprogramming/c_loops.htm 1/3

4/1/2020 C - Loops - Tutorialspoint

Sr.No. Loop Type & Description
1 while loop
Repeats a statement or group of statements while a given condition is true. It tests the
condition before executing the loop body.
2 for loop
Executes a sequence of statements multiple times and abbreviates the code that manages the
loop variable.
3 do...while loop
It is more like a while statement, except that it tests the condition at the end of the loop body.
4 nested loops

You can use one or more loops inside any other while, for, or do..while loop.

Loop Control Statements

Loop control statements change execution from its normal sequence. When execution leaves a scope, all
automatic objects that were created in that scope are destroyed.

C supports the following control statements.

Sr.No. Control Statement & Description

1 break statement
Terminates the loop or switch statement and ftransfers execution to the statement
immediately following the loop or switch.

2 continue statement
Causes the loop to skip the remainder of its body and immediately retest its condition prior to
reiterating.

3 goto statement

Transfers control to the labeled statement.

The Infinite Loop

A loop becomes an infinite loop if a condition never becomes false. The for loop is traditionally used for

this purpose. Since none of the three expressions that form the 'for' loop are required, you can make an
endless loop by leaving the conditional expression empty.

https://www.tutorialspoint.com/cprogramming/c_loops.htm 2/3

4/1/2020 C - Loops - Tutorialspoint
#include <stdio.h>
int main () {
for(; 5) o

printf("This loop will run forever.\n");

return 0;

When the conditional expression is absent, it is assumed to be true. You may have an initialization and

increment expression, but C programmers more commonly use the for(;;) construct to signify an infinite
loop.

NOTE - You can terminate an infinite loop by pressing Ctrl + C keys.

https://www.tutorialspoint.com/cprogramming/c_loops.htm 3/3

4/1/2020 C - Functions - Tutorialspoint

C - Functions

A function is a group of statements that together perform a task. Every C program has at least one
function, which is main(), and all the most trivial programs can define additional functions.

You can divide up your code into separate functions. How you divide up your code among different
functions is up to you, but logically the division is such that each function performs a specific task.

A function declaration tells the compiler about a function's name, return type, and parameters. A function
definition provides the actual body of the function.

The C standard library provides numerous built-in functions that your program can call. For example,
strcat() to concatenate two strings, memcpy() to copy one memory location to another location, and
many more functions.

A function can also be referred as a method or a sub-routine or a procedure, etc.

Defining a Function

The general form of a function definition in C programming language is as follows -

return_type function_name(parameter list) {
body of the function

}

A function definition in C programming consists of a function header and a function body. Here are all the
parts of a function -

. Return Type - A function may return a value. The return_type is the data type of the value the
function returns. Some functions perform the desired operations without returning a value. In this
case, the return_type is the keyword void.

o Function Name - This is the actual name of the function. The function name and the parameter
list together constitute the function signature.

. Parameters - A parameter is like a placeholder. When a function is invoked, you pass a value to
the parameter. This value is referred to as actual parameter or argument. The parameter list
refers to the type, order, and number of the parameters of a function. Parameters are optional;
that is, a function may contain no parameters.

. Function Body — The function body contains a collection of statements that define what the
function does.

Example

Given below is the source code for a function called max(). This function takes two parameters num1 and
num2 and returns the maximum value between the two -

https://www.tutorialspoint.com/cprogramming/c_functions.htm 1/4

4/1/2020 C - Functions - Tutorialspoint

/* function returning the max between two numbers */
int max(int numl, int num2) {

/* Llocal variable declaration */
int result;

if (numl > num2)
result = numl;
else

result = num2;

return result;

Function Declarations

A function declaration tells the compiler about a function name and how to call the function. The actual
body of the function can be defined separately.

A function declaration has the following parts —

return_type function_name(parameter list);

For the above defined function max(), the function declaration is as follows -

int max(int numl, int num2);

Parameter names are not important in function declaration only their type is required, so the following is
also a valid declaration -

int max(int, int);

Function declaration is required when you define a function in one source file and you call that function in
another file. In such case, you should declare the function at the top of the file calling the function.

Calling a Function

While creating a C function, you give a definition of what the function has to do. To use a function, you will
have to call that function to perform the defined task.

When a program calls a function, the program control is transferred to the called function. A called
function performs a defined task and when its return statement is executed or when its function-ending
closing brace is reached, it returns the program control back to the main program.

To call a function, you simply need to pass the required parameters along with the function name, and if
the function returns a value, then you can store the returned value. For example —

https://www.tutorialspoint.com/cprogramming/c_functions.htm 2/4

4/1/2020 C - Functions - Tutorialspoint

#include <stdio.h>

/* function declaration */
int max(int numl, int num2);

int main () {
/* Llocal variable definition */
int a = 100;
int b = 200;

int ret;

/* calling a function to get max value */
ret = max(a, b);

printf("Max value is : %d\n", ret);

return 0;
/* function returning the max between two numbers */
int max(int numl, int num2) {

/* Local variable declaration */
int result;

if (numl > num2)
result = numl;
else
result = num2;

return result;

We have kept max() along with main() and compiled the source code. While running the final executable,
it would produce the following result -

Max value is : 200

Function Arguments

If a function is to use arguments, it must declare variables that accept the values of the arguments. These
variables are called the formal parameters of the function.

Formal parameters behave like other local variables inside the function and are created upon entry into
the function and destroyed upon exit.

While calling a function, there are two ways in which arguments can be passed to a function -

https://www.tutorialspoint.com/cprogramming/c_functions.htm 3/4

4/1/2020

C - Functions - Tutorialspoint

Sr.No. Call Type & Description
1 Call by value
This method copies the actual value of an argument into the formal parameter of the function.
In this case, changes made to the parameter inside the function have no effect on the
argument.
2

Call by reference

This method copies the address of an argument into the formal parameter. Inside the function,

the address is used to access the actual argument used in the call. This means that changes
made to the parameter affect the argument.

By default, C uses call by value to pass arguments. In general, it means the code within a function
cannot alter the arguments used to call the function.

https://www.tutorialspoint.com/cprogramming/c_functions.htm

4/4

4/1/2020 C - Scope Rules - Tutorialspoint

C - Scope Rules

A scope in any programming is a region of the program where a defined variable can have its existence
and beyond that variable it cannot be accessed. There are three places where variables can be declared
in C programming language -

® Inside a function or a block which is called local variables.
® Outside of all functions which is called global variables.
. In the definition of function parameters which are called formal parameters.

Let us understand what are local and global variables, and formal parameters.

Local Variables

Variables that are declared inside a function or block are called local variables. They can be used only by
statements that are inside that function or block of code. Local variables are not known to functions
outside their own. The following example shows how local variables are used. Here all the variables a, b,
and c are local to main() function.

#include <stdio.h>

int main () {
/* Llocal variable declaration */
int a, b;

int c;

/* actual initialization */

a = 10;
b = 20;
c =a + b;

printf ("value of a = %d, b = %d and c = %d\n", a, b, c);

return 0;

Global Variables

Global variables are defined outside a function, usually on top of the program. Global variables hold their

values throughout the lifetime of your program and they can be accessed inside any of the functions
defined for the program.

https://www.tutorialspoint.com/cprogramming/c_scope_rules.htm

1/4

4/1/2020 C - Scope Rules - Tutorialspoint

A global variable can be accessed by any function. That is, a global variable is available for use
throughout your entire program after its declaration. The following program show how global variables are
used in a program.

#include <stdio.h>

/* global variable declaration */
int g;

int main () {

/* Llocal variable declaration */
int a, b;

/* actual initialization */

a = 10;
b = 20;
g =a+b;

printf ("value of a = %d, b = %d and g = %d\n", a, b, g);

return 0O;

A program can have same name for local and global variables but the value of local variable inside a
function will take preference. Here is an example -

#include <stdio.h>

/* global variable declaration */
int g = 20;

int main () {

/* Llocal variable declaration */
int g = 10;

printf ("value of g = %d\n", g);

return O;

When the above code is compiled and executed, it produces the following result —

value of g = 10

Formal Parameters

https://www.tutorialspoint.com/cprogramming/c_scope_rules.htm 2/4

4/1/2020

Formal parameters, are treated as local variables with-in a function and they take precedence over global
variables. Following is an example -

#include <stdio.h>

/* global variable declaration */
= 20;

int a

k)

int main () {

/* Llocal variable declaration

int
int
int

printf ("value of a in main()

Cc =

printf ("value of c in main()

a =
b =
Cc =

10;
20;
9;

sum(a, b);

return 0;

/* function to add two integers

int sum(int a, int b) {

printf ("value of a in sum()
printf ("value of b in sum()

return a + b;

When the above code is compiled and executed, it produces the following result —

value
value
value
value

of a
of a
of b
of ¢

in
in
in
in

main() = 10
sum() = 10
sum() = 20
main() = 30

C - Scope Rules - Tutorialspoint

in main function */

%d\n",

%d\n",

*/

%d\n",
%d\n",

a);

)

a);
b);

Initializing Local and Global Variables

When a local variable is defined, it is not initialized by the system, you must initialize it yourself. Global
variables are initialized automatically by the system when you define them as follows -

https://www.tutorialspoint.com/cprogramming/c_scope_rules.htm

3/4

4/1/2020

Data Type
int
char
float
double

pointer

C - Scope Rules - Tutorialspoint

Initial Default Value

I\Ol

NULL

It is a good programming practice to initialize variables properly, otherwise your program may produce
unexpected results, because uninitialized variables will take some garbage value already available at their

memory location.

https://www.tutorialspoint.com/cprogramming/c_scope_rules.htm

4/4

4/1/2020 C - Arrays - Tutorialspoint

C - Arrays

Arrays a kind of data structure that can store a fixed-size sequential collection of elements of the same
type. An array is used to store a collection of data, but it is often more useful to think of an array as a
collection of variables of the same type.

Instead of declaring individual variables, such as number0, number1, ..., and number99, you declare one
array variable such as numbers and use numbers[0], numbers[1], and ..., numbers[99] to represent
individual variables. A specific element in an array is accessed by an index.

All arrays consist of contiguous memory locations. The lowest address corresponds to the first element
and the highest address to the last element.

First Element Last Element

| !

Numbers[0] | Numbers[1] | Numbers[2] | Numbers[3] | -

Declaring Arrays

To declare an array in C, a programmer specifies the type of the elements and the number of elements
required by an array as follows -

type arrayName [arraySize];

This is called a single-dimensional array. The arraySize must be an integer constant greater than zero
and type can be any valid C data type. For example, to declare a 10-element array called balance of type
double, use this statement -

double balance[10];
Here balance is a variable array which is sufficient to hold up to 10 double numbers.

Initializing Arrays
You can initialize an array in C either one by one or using a single statement as follows -

double balance[5] = {1000.0, 2.0, 3.4, 7.0, 50.0};

The number of values between braces { } cannot be larger than the number of elements that we declare
for the array between square brackets [].

https://www.tutorialspoint.com/cprogramming/c_arrays.htm 113

4/1/2020 C - Arrays - Tutorialspoint

If you omit the size of the array, an array just big enough to hold the initialization is created. Therefore, if
you write —

double balance[] = {1000.0, 2.0, 3.4, 7.0, 50.0};

You will create exactly the same array as you did in the previous example. Following is an example to
assign a single element of the array -

balance[4] = 50.0;

The above statement assigns the 51 element in the array with a value of 50.0. All arrays have 0 as the
index of their first element which is also called the base index and the last index of an array will be total
size of the array minus 1. Shown below is the pictorial representation of the array we discussed above -

balance 1000.0 2.0 3.4 7.0 50.0

Accessing Array Elements

An element is accessed by indexing the array name. This is done by placing the index of the element
within square brackets after the name of the array. For example -

double salary = balance[9];

The above statement will take the 10" element from the array and assign the value to salary variable. The

following example Shows how to use all the three above mentioned concepts viz. declaration,
assignment, and accessing arrays -

#include <stdio.h>
int main () {

int n[10]; /* n is an array of 10 integers */
int i,3;

/* initialize elements of array n to @ */
for (1 =0; i< 10; i++) {
n[i] =1+ 100; /* set element at location 1 to 1 + 100 */

/* output each array element's value */
for (j =0; j < 10; j++) {
printf("Element[%d] = %d\n", j, n[j]);

https://www.tutorialspoint.com/cprogramming/c_arrays.htm 2/3

4/1/2020

C - Arrays - Tutorialspoint

return 0;

When the above code is compiled and executed, it produces the following result —

Element
Element
Element
Element
Element
Element
Element
Element

L e B e T e T e T T e B |

0] = 100
1] = 101
2] = 102
3] = 103
4] = 104
5] = 105
6] = 106
7] = 107

Element[8] = 108
Element[9] = 109

Arrays in Detail

Arrays are important to C and should need a lot more attention. The following important concepts related
to array should be clear to a C programmer -

Sr.No.

Concept & Description

Multi-dimensional arrays

C supports multidimensional arrays. The simplest form of the multidimensional array is the
two-dimensional array.

Passing arrays to functions

You can pass to the function a pointer to an array by specifying the array's name without an
index.

Return array from a function

C allows a function to return an array.

Pointer to an array

You can generate a pointer to the first element of an array by simply specifying the array
name, without any index.

https://www.tutorialspoint.com/cprogramming/c_arrays.htm 3/3

4/1/2020 C - Pointers - Tutorialspoint

C - Pointers

Pointers in C are easy and fun to learn. Some C programming tasks are performed more easily with
pointers, and other tasks, such as dynamic memory allocation, cannot be performed without using
pointers. So it becomes necessary to learn pointers to become a perfect C programmer. Let's start
learning them in simple and easy steps.

As you know, every variable is a memory location and every memory location has its address defined
which can be accessed using ampersand (&) operator, which denotes an address in memory. Consider
the following example, which prints the address of the variables defined -

#include <stdio.h>
int main () {

int varil;
char var2[10];

printf("Address of varl variable: %x\n", &varl);
printf("Address of var2 variable: %x\n", &var2);

return 0;

When the above code is compiled and executed, it produces the following result —

Address of varl variable: bff5a400
Address of var2 variable: bff5a3f6

What are Pointers?

A pointer is a variable whose value is the address of another variable, i.e., direct address of the memory
location. Like any variable or constant, you must declare a pointer before using it to store any variable
address. The general form of a pointer variable declaration is -

type *var-name;

Here, type is the pointer's base type; it must be a valid C data type and var-name is the name of the
pointer variable. The asterisk * used to declare a pointer is the same asterisk used for multiplication.
However, in this statement the asterisk is being used to designate a variable as a pointer. Take a look at
some of the valid pointer declarations -

https://www.tutorialspoint.com/cprogramming/c_pointers.htm 1/4

4/1/2020 C - Pointers - Tutorialspoint
int *ip; /* pointer to an integer */
double *dp; /* pointer to a double */

float *fp; /* pointer to a float */
char *ch /* pointer to a character */

The actual data type of the value of all pointers, whether integer, float, character, or otherwise, is the
same, a long hexadecimal number that represents a memory address. The only difference between
pointers of different data types is the data type of the variable or constant that the pointer points to.

How to Use Pointers?

There are a few important operations, which we will do with the help of pointers very frequently. (a) We
define a pointer variable, (b) assign the address of a variable to a pointer and (c) finally access the value
at the address available in the pointer variable. This is done by using unary operator * that returns the
value of the variable located at the address specified by its operand. The following example makes use of
these operations —

#include <stdio.h>

int main () {

int var = 20; /* actual variable declaration */
int *ip; /* pointer variable declaration */

ip = &var; /* store address of var in pointer variable*/
printf("Address of var variable: %x\n", &var);

/* address stored in pointer variable */
printf("Address stored in ip variable: %x\n", ip);

/* access the value using the pointer */
printf("Value of *ip variable: %d\n", *ip);

return 0;

When the above code is compiled and executed, it produces the following result —

Address of var variable: bffd8b3c
Address stored in ip variable: bffd8b3c
Value of *ip variable: 20

NULL Pointers

It is always a good practice to assign a NULL value to a pointer variable in case you do not have an exact
address to be assigned. This is done at the time of variable declaration. A pointer that is assigned NULL is

https://www.tutorialspoint.com/cprogramming/c_pointers.htm 2/4

4/1/2020 C - Pointers - Tutorialspoint

called a null pointer.

The NULL pointer is a constant with a value of zero defined in several standard libraries. Consider the
following program —
#include <stdio.h>
int main () {
int *ptr = NULL;
printf("The value of ptr is : %x\n", ptr);

return 0;

When the above code is compiled and executed, it produces the following result —
The value of ptr is ©

In most of the operating systems, programs are not permitted to access memory at address 0 because
that memory is reserved by the operating system. However, the memory address 0 has special
significance; it signals that the pointer is not intended to point to an accessible memory location. But by
convention, if a pointer contains the null (zero) value, it is assumed to point to nothing.

To check for a null pointer, you can use an 'if’ statement as follows -

if(ptr) /* succeeds if p is not null */
if(!ptr) /* succeeds if p is null */

Pointers in Detail

Pointers have many but easy concepts and they are very important to C programming. The following
important pointer concepts should be clear to any C programmer —

https://www.tutorialspoint.com/cprogramming/c_pointers.htm 3/4

4/1/2020 C - Pointers - Tutorialspoint
Sr.No. Concept & Description

1 Pointer arithmetic

There are four arithmetic operators that can be used in pointers: ++, --, +, -

2 Array of pointers

You can define arrays to hold a number of pointers.

3 Pointer to pointer

C allows you to have pointer on a pointer and so on.

4 Passing pointers to functions in C

Passing an argument by reference or by address enable the passed argument to be changed
in the calling function by the called function.

5 Return pointer from functions in C

C allows a function to return a pointer to the local variable, static variable, and dynamically
allocated memory as well.

https://www.tutorialspoint.com/cprogramming/c_pointers.htm 4/4

4/1/2020 C - Strings - Tutorialspoint

C - Strings

Strings are actually one-dimensional array of characters terminated by a null character \O'. Thus a null-
terminated string contains the characters that comprise the string followed by a null.

The following declaration and initialization create a string consisting of the word "Hello". To hold the null
character at the end of the array, the size of the character array containing the string is one more than the
number of characters in the word "Hello."

char greeting[6] = {'H', 'e', '1l', '1l', 'o', '"\0'};
If you follow the rule of array initialization then you can write the above statement as follows -

char greeting[] = "Hello";

Following is the memory presentation of the above defined string in C/C++ —

Index 0 1 2 3 4 5
Variable H e | I 0 \0
Address 0x23451 | Ox23452 0x23453 Dx23454 | Ox23455 | Ox23456

Actually, you do not place the null character at the end of a string constant. The C compiler automatically
places the "\0' at the end of the string when it initializes the array. Let us try to print the above mentioned
string -
#include <stdio.h>
int main () {
char greeting[6] = {'H"', 'e', '1', '1", 'o', '\@'};

printf("Greeting message: %s\n", greeting);
return 0;

When the above code is compiled and executed, it produces the following result —

Greeting message: Hello

https://www.tutorialspoint.com/cprogramming/c_strings.htm 113

4/1/2020 C - Strings - Tutorialspoint

C supports a wide range of functions that manipulate null-terminated strings -

Sr.No. Function & Purpose

strcpy(s1, s2);

Copies string s2 into string s1.

2 strcat(s1, s2);

Concatenates string s2 onto the end of string s1.
3

strlen(s1);

Returns the length of string s1.
4

strcmp(s1, s2);

Returns 0 if s1 and s2 are the same; less than 0 if s1<s2; greater than 0 if s1>s2.
5

strchr(s1, ch);

Returns a pointer to the first occurrence of character ch in string s1.
6

strstr(s1, s2);

Returns a pointer to the first occurrence of string s2 in string s1.

The following example uses some of the above-mentioned functions -

#include <stdio.h>
#include <string.h>

int main () {

char stri[12]
char str2[12]
char str3[12];
int len ;

"Hello";
"World";

/* copy strl into str3 */
strcpy(str3, strl);
printf("strcpy(str3, strl) : %s\n", str3);

/* concatenates strl and str2 */

https://www.tutorialspoint.com/cprogramming/c_strings.htm

2/3

4/1/2020 C - Strings - Tutorialspoint

strcat(strl, str2);
printf("strcat(stri, str2): %s\n", strl);

/* total lenghth of strl after concatenation */
len = strlen(strl);

printf("strlen(strl) : %d\n", len);

return 0;

When the above code is compiled and executed, it produces the following result —

strcpy(str3, strl) : Hello
strcat(strl, str2): HelloWorld
strlen(strl) : 10

https://www.tutorialspoint.com/cprogramming/c_strings.htm 3/3

4/1/2020 C - Structures - Tutorialspoint

C - Structures

Arrays allow to define type of variables that can hold several data items of the same kind. Similarly

structure is another user defined data type available in C that allows to combine data items of different
kinds.

Structures are used to represent a record. Suppose you want to keep track of your books in a library. You
might want to track the following attributes about each book -

. Title

. Author

. Subject
. Book ID

Defining a Structure

To define a structure, you must use the struct statement. The struct statement defines a new data type,
with more than one member. The format of the struct statement is as follows —

struct [structure tag] {

member definition;
member definition;

member definition;
} [one or more structure variables];

The structure tag is optional and each member definition is a normal variable definition, such as int i; or
float f; or any other valid variable definition. At the end of the structure's definition, before the final

semicolon, you can specify one or more structure variables but it is optional. Here is the way you would
declare the Book structure -

struct Books {
char title[50];
char author[50];
char subject[100];
int book_id;

} book;

Accessing Structure Members

To access any member of a structure, we use the member access operator (.). The member access
operator is coded as a period between the structure variable name and the structure member that we wish

https://www.tutorialspoint.com/cprogramming/c_structures.htm 116

4/1/2020

C - Structures - Tutorialspoint

to access. You would use the keyword struct to define variables of structure type
shows how to use a structure in a program -

#include <stdio.h>
#include <string.h>

struct Books {

1

char title[50];
char author[50];
char subject[100];
int book_id;

int main() {

struct Books Book1; /* Declare Bookl of type Book */
struct Books Book2; /* Declare Book2 of type Book */

/* book 1 specification */

strcpy(Bookl.title, "C Programming");

strcpy(Bookl.author, "Nuha Ali");

strcpy(Bookl.subject, "C Programming Tutorial");
Bookl.book_id = 6495407;

/* book 2 specification */

strcpy(Book2.title, "Telecom Billing");

strcpy(Book2.author, "Zara Ali");

strcpy(Book2.subject, "Telecom Billing Tutorial");
Book2.book_id = 6495700;

/* print Bookl info */

printf("Book 1 title : %s\n", Bookl.title);
printf("Book 1 author : %s\n", Bookl.author);
printf("Book 1 subject : %s\n", Bookl.subject);
printf("Book 1 book_id : %d\n", Bookl.book_id);

/* print Book2 info */

printf("Book 2 title : %s\n", Book2.title);
printf("Book 2 author : %s\n", Book2.author);
printf("Book 2 subject : %s\n", Book2.subject);
printf("Book 2 book_id : %d\n", Book2.book_id);

return 0;

When the above code is compiled and executed, it produces the following result -

Book 1 title : C Programming
Book 1 author : Nuha Ali

https://www.tutorialspoint.com/cprogramming/c_structures.htm

. The following example

2/6

4/1/2020

Book 1 subject : C Programming Tutorial
Book 1 book_id : 6495407

Book 2 title : Telecom Billing

Book 2 author : Zara Ali

Book 2 subject : Telecom Billing Tutorial
Book 2 book_id : 6495700

Structures as Function Arguments

You can pass a structure as a function argument in the same way as you pass any other variable or

pointer.

#include <stdio.h>
#include <string.h>

struct Books {

1

char title[50];
char author[50];
char subject[100];
int book_id;

/* function declaration */
void printBook(struct Books book);

int main() {

struct Books Book1l;
struct Books Book2;

/* book 1 specification */

strcpy(Bookl.title, "C Programming");

strcpy(Bookl.author, "Nuha Ali");

C - Structures - Tutorialspoint

/* Declare Bookl of type Book */
/* Declare Book2 of type Book */

strcpy(Bookl.subject, "C Programming Tutorial");

Book1l.book_id = 6495407;

/* book 2 specification */

strcpy(Book2.title, "Telecom Billing");

strcpy(Book2.author, "Zara Ali");

strcpy(Book2.subject, "Telecom Billing Tutorial");

Book2.book_id = 6495700;

/* print Book1l info */
printBook(Bookl);

/* Print Book2 info */
printBook(Book2);

return 0;

https://www.tutorialspoint.com/cprogramming/c_structures.htm

3/6

4/1/2020 C - Structures - Tutorialspoint

}
void printBook(struct Books book) {

printf("Book title : %s\n", book.title);
printf("Book author : %s\n", book.author);
printf("Book subject : %s\n", book.subject);
printf("Book book_id : %d\n", book.book_id);

When the above code is compiled and executed, it produces the following result —

Book title : C Programming

Book author : Nuha Ali

Book subject : C Programming Tutorial
Book book_id : 6495407

Book title : Telecom Billing

Book author : Zara Ali

Book subject : Telecom Billing Tutorial
Book book_id : 6495700

Pointers to Structures

You can define pointers to structures in the same way as you define pointer to any other variable -

struct Books *struct_pointer;

Now, you can store the address of a structure variable in the above defined pointer variable. To find the

address of a structure variable, place the '&'; operator before the structure's name as follows -

struct_pointer = &Book1l;

To access the members of a structure using a pointer to that structure, you must use the — operator as

follows —

struct_pointer->title;

Let us re-write the above example using structure pointer.

#include <stdio.h>
#include <string.h>

struct Books {
char title[50];
char author[50];
char subject[100];
int book_id;

https://www.tutorialspoint.com/cprogramming/c_structures.htm

4/6

4/1/2020
}s

C - Structures - Tutorialspoint

/* function declaration */
void printBook(struct Books *book);
int main() {

struct Books Book1l;
struct Books Book2;

/* book 1 specification */

strcpy(Bookl.title, "C Programming");

strcpy(Bookl.author, "Nuha Ali");

strcpy(Bookl.subject, "C Programming Tutorial");
Book1.book_id = 6495407;

/* book 2 specification */

strcpy(Book2.title, "Telecom Billing");

strcpy(Book2.author, "Zara Ali");

strcpy(Book2.subject, "Telecom Billing Tutorial");
Book2.book_id = 6495700;

/* print Book1l info by passing address of Bookl */
printBook(&Bookl);

/* print Book2 info by passing address of Book2 */
printBook(&Book2);

return 0;

void printBook(struct Books *book) {

When the above code is compiled and executed, it produces the following result -

printf("Book title : %s\n", book->title);
printf("Book author : %s\n", book->author);
printf("Book subject : %s\n", book->subject);
printf("Book book_id : %d\n", book->book_id);

Book title : C Programming

Book author : Nuha Ali

Book subject : C Programming Tutorial
Book book_id : 6495407

Book title : Telecom Billing

Book author : Zara Ali

Book subject : Telecom Billing Tutorial
Book book_id : 6495700

https://www.tutorialspoint.com/cprogramming/c_structures.htm

/* Declare Bookl of type Book */
/* Declare Book2 of type Book

*/

5/6

4/1/2020 C - Structures - Tutorialspoint

Bit Fields

Bit Fields allow the packing of data in a structure. This is especially useful when memory or data storage
is at a premium. Typical examples include -

. Packing several objects into a machine word. e.g. 1 bit flags can be compacted.
. Reading external file formats -- non-standard file formats could be read in, e.g., 9-bit integers.

C allows us to do this in a structure definition by putting :bit length after the variable. For example -

struct packed_struct {
unsigned int f1:1;
unsigned int f2:1;
unsigned int f3:1;
unsigned int f4:1;
unsigned int type:4;
unsigned int my_int:9;

} pack;

Here, the packed_struct contains 6 members: Four 1 bit flags f1..f3, a 4-bit type and a 9-bit my_int.

C automatically packs the above bit fields as compactly as possible, provided that the maximum length of
the field is less than or equal to the integer word length of the computer. If this is not the case, then some
compilers may allow memory overlap for the fields while others would store the next field in the next word.

https://www.tutorialspoint.com/cprogramming/c_structures.htm 6/6

4/1/2020 C - Unions - Tutorialspoint

C - Unions

A union is a special data type available in C that allows to store different data types in the same memory
location. You can define a union with many members, but only one member can contain a value at any
given time. Unions provide an efficient way of using the same memory location for multiple-purpose.

Defining a Union

To define a union, you must use the union statement in the same way as you did while defining a
structure. The union statement defines a new data type with more than one member for your program.
The format of the union statement is as follows -

union [union tag] {
member definition;
member definition;

member definition;
} [one or more union variables];

The union tag is optional and each member definition is a normal variable definition, such as int i; or float
f; or any other valid variable definition. At the end of the union's definition, before the final semicolon, you
can specify one or more union variables but it is optional. Here is the way you would define a union type
named Data having three members i, f, and str -

union Data {
int i;
float f;
char str[20];
} data;

Now, a variable of Data type can store an integer, a floating-point number, or a string of characters. It
means a single variable, i.e., same memory location, can be used to store multiple types of data. You can
use any built-in or user defined data types inside a union based on your requirement.

The memory occupied by a union will be large enough to hold the largest member of the union. For
example, in the above example, Data type will occupy 20 bytes of memory space because this is the
maximum space which can be occupied by a character string. The following example displays the total
memory size occupied by the above union -

#include <stdio.h>
#include <string.h>

union Data {
int i;

https://www.tutorialspoint.com/cprogramming/c_unions.htm 113

4/1/2020 C - Unions - Tutorialspoint

float f;
char str[20];
1

int main() {
union Data data;

printf("Memory size occupied by data : %d\n", sizeof(data));

return 0;

When the above code is compiled and executed, it produces the following result -

Memory size occupied by data : 20

Accessing Union Members

To access any member of a union, we use the member access operator (.). The member access
operator is coded as a period between the union variable name and the union member that we wish to

access. You would use the keyword union to define variables of union type. The following example shows
how to use unions in a program -

#include <stdio.h>
#include <string.h>

union Data {
int i;
float f;
char str[20];
s

int main() {
union Data data;
data.i 10;

data.f = 220.5;
strcpy(data.str, "C Programming");

printf("data.i : %d\n", data.i);
printf("data.f : %f\n", data.f);
printf("data.str : %s\n", data.str);

return 0O;

https://www.tutorialspoint.com/cprogramming/c_unions.htm 2/3

4/1/2020 C - Unions - Tutorialspoint

When the above code is compiled and executed, it produces the following result —

data.i : 1917853763
data.f : 4122360580327794860452759994368.000000
data.str : C Programming

Here, we can see that the values of i and f members of union got corrupted because the final value
assigned to the variable has occupied the memory location and this is the reason that the value of str
member is getting printed very well.

Now let's look into the same example once again where we will use one variable at a time which is the
main purpose of having unions -

#include <stdio.h>
#include <string.h>
union Data {

int i;

float f;

char str[20];
s

int main() {
union Data data;

data.i = 10;
printf("data.i : %d\n", data.i);

data.f = 220.5;
printf("data.f : %f\n", data.f);

strcpy(data.str, "C Programming");
printf("data.str : %s\n", data.str);

return 0;

When the above code is compiled and executed, it produces the following result —

data.i : 10
data.f : 220.500000
data.str : C Programming

Here, all the members are getting printed very well because one member is being used at a time.

https://www.tutorialspoint.com/cprogramming/c_unions.htm 3/3

4/1/2020 C - Input and Output - Tutorialspoint

C - Input and Output

When we say Input, it means to feed some data into a program. An input can be given in the form of a file

or from the command line. C programming provides a set of built-in functions to read the given input and
feed it to the program as per requirement.

When we say Output, it means to display some data on screen, printer, or in any file. C programming

provides a set of built-in functions to output the data on the computer screen as well as to save it in text or
binary files.

The Standard Files
C programming treats all the devices as files. So devices such as the display are addressed in the same
way as files and the following three files are automatically opened when a program executes to provide

access to the keyboard and screen.

Standard File File Pointer

Device
Standard input stdin Keyboard
Standard output stdout Screen
Standard error stderr Your screen

The file pointers are the means to access the file for reading and writing purpose. This section explains
how to read values from the screen and how to print the result on the screen.

The getchar() and putchar() Functions

The int getchar(void) function reads the next available character from the screen and returns it as an

integer. This function reads only single character at a time. You can use this method in the loop in case
you want to read more than one character from the screen.

The int putchar(int c) function puts the passed character on the screen and returns the same character.
This function puts only single character at a time. You can use this method in the loop in case you want to
display more than one character on the screen. Check the following example -

#include <stdio.h>
int main() {

int c;

printf("Enter a value :");
c = getchar();

https://www.tutorialspoint.com/cprogramming/c_input_output.htm 1/3

4/1/2020 C - Input and Output - Tutorialspoint

printf("\nYou entered: ");
putchar(c);

return 0O;

When the above code is compiled and executed, it waits for you to input some text. When you enter a text
and press enter, then the program proceeds and reads only a single character and displays it as follows -

$./a.out
Enter a value : this is test
You entered: t

The gets() and puts() Functions

The char *gets(char *s) function reads a line from stdin into the buffer pointed to by s until either a
terminating newline or EOF (End of File).

The int puts(const char *s) function writes the string 's' and 'a' trailing newline to stdout.

NOTE: Though it has been deprecated to use gets() function, Instead of using gets, you want to use
fgets()

#include <stdio.h>
int main() {

char str[100];

printf("Enter a value :");
gets(str);

printf("\nYou entered: ");
puts(str);

return 0;

When the above code is compiled and executed, it waits for you to input some text. When you enter a text
and press enter, then the program proceeds and reads the complete line till end, and displays it as follows

$./a.out
Enter a value : this is test
You entered: this is test

The scanf() and printf() Functions

https://www.tutorialspoint.com/cprogramming/c_input_output.htm 2/3

4/1/2020 C - Input and Output - Tutorialspoint

The int scanf(const char *format, ...) function reads the input from the standard input stream stdin and
scans that input according to the format provided.

The int printf(const char *format, ...) function writes the output to the standard output stream stdout
and produces the output according to the format provided.

The format can be a simple constant string, but you can specify %s, %d, %c, %f, etc., to print or read
strings, integer, character or float respectively. There are many other formatting options available which
can be used based on requirements. Let us now proceed with a simple example to understand the
concepts better —

#include <stdio.h>
int main() {

char str[100];

int i;

printf("Enter a value :");
scanf("%s %d", str, &i);

printf("\nYou entered: %s %d ", str, i);

return 0O;

When the above code is compiled and executed, it waits for you to input some text. When you enter a text
and press enter, then program proceeds and reads the input and displays it as follows -

$./a.out
Enter a value : seven 7
You entered: seven 7

Here, it should be noted that scanf() expects input in the same format as you provided %s and %d, which
means you have to provide valid inputs like "string integer". If you provide "string string" or "integer
integer", then it will be assumed as wrong input. Secondly, while reading a string, scanf() stops reading as
soon as it encounters a space, so "this is test" are three strings for scanf().

https://www.tutorialspoint.com/cprogramming/c_input_output.htm 3/3

4/1/2020 C - File /O - Tutorialspoint

C-Filel/O

The last chapter explained the standard input and output devices handled by C programming language.
This chapter cover how C programmers can create, open, close text or binary files for their data storage.

A file represents a sequence of bytes, regardless of it being a text file or a binary file. C programming
language provides access on high level functions as well as low level (OS level) calls to handle file on
your storage devices. This chapter will take you through the important calls for file management.

Opening Files
You can use the fopen() function to create a new file or to open an existing file. This call will initialize an

object of the type FILE, which contains all the information necessary to control the stream. The prototype
of this function call is as follows -

FILE *fopen(const char * filename, const char * mode);

Here, filename is a string literal, which you will use to name your file, and access mode can have one of
the following values -

https://www.tutorialspoint.com/cprogramming/c_file_io.htm 1/5

4/1/2020 C - File /O - Tutorialspoint

Sr.No. Mode & Description

1
r

Opens an existing text file for reading purpose.

2
w
Opens a text file for writing. If it does not exist, then a new file is created. Here your program
will start writing content from the beginning of the file.

3
a
Opens a text file for writing in appending mode. If it does not exist, then a new file is created.
Here your program will start appending content in the existing file content.

4 r+
Opens a text file for both reading and writing.

5 w+
Opens a text file for both reading and writing. It first truncates the file to zero length if it exists,
otherwise creates a file if it does not exist.

6

at

Opens a text file for both reading and writing. It creates the file if it does not exist. The reading
will start from the beginning but writing can only be appended.

If you are going to handle binary files, then you will use following access modes instead of the above
mentioned ones -

"rb", "wb", "ab", "rb+", "r+b", "wb+", "w+b", "ab+", "a+b"

Closing a File

To close a file, use the fclose() function. The prototype of this function is —
int fclose(FILE *fp);

The fclose(-) function returns zero on success, or EOF if there is an error in closing the file. This function
actually flushes any data still pending in the buffer to the file, closes the file, and releases any memory
used for the file. The EOF is a constant defined in the header file stdio.h.

https://www.tutorialspoint.com/cprogramming/c_file_io.htm 2/5

4/1/2020 C - File /O - Tutorialspoint

There are various functions provided by C standard library to read and write a file, character by character,
or in the form of a fixed length string.

Writing a File

Following is the simplest function to write individual characters to a stream -
int fputc(int c, FILE *fp);

The function fputc() writes the character value of the argument c to the output stream referenced by fp. It
returns the written character written on success otherwise EOF if there is an error. You can use the
following functions to write a null-terminated string to a stream -

int fputs(const char *s, FILE *fp);

The function fputs() writes the string s to the output stream referenced by fp. It returns a non-negative
value on success, otherwise EOF is returned in case of any error. You can use int fprintf(FILE *fp,const
char *format, ...) function as well to write a string into a file. Try the following example.

Make sure you have /tmp directory available. If it is not, then before proceeding, you must create this
directory on your machine.

#include <stdio.h>

main() {
FILE *fp;

fp = fopen("/tmp/test.txt", "w+");
fprintf(fp, "This is testing for fprintf...\n");

fputs("This is testing for fputs...\n", fp);
fclose(fp);

When the above code is compiled and executed, it creates a new file test.txt in /tmp directory and writes
two lines using two different functions. Let us read this file in the next section.

Reading a File

Given below is the simplest function to read a single character from a file -

int fgetc(FILE * fp);
The fgetc() function reads a character from the input file referenced by fp. The return value is the
character read, or in case of any error, it returns EOF. The following function allows to read a string from a

stream —

char *fgets(char *buf, int n, FILE *fp);

https://www.tutorialspoint.com/cprogramming/c_file_io.htm 3/5

4/1/2020

C - File /O - Tutorialspoint

The functions fgets() reads up to n-1 characters from the input stream referenced by fp. It copies the read

string into the buffer buf, appending a null character to terminate the string.

If this function encounters a newline character \n' or the end of the file EOF before they have read the
maximum number of characters, then it returns only the characters read up to that point including the new
line character. You can also use int fscanf(FILE *fp, const char *format, ...) function to read strings from

a file, but it stops reading after encountering the first space character.

#include <stdio.h>

main() {

FILE *fp;
char buff[255];

fp = fopen("/tmp/test.txt",
fscanf(fp, "%s", buff);
printf("1 : %s\n", buff);

fgets(buff, 255, (FILE*)fp);
printf("2: %s\n", buff);

fgets(buff, 255, (FILE*)fp);
printf("3: %s\n", buff);
fclose(fp);

s

When the above code is compiled and executed, it reads the file created in the previous section and
produces the following result -

1:
2:

3:

This
is testing for fprintf...

This is testing for fputs...

Let's see a little more in detail about what happened here. First, fscanf() read just This because after
that, it encountered a space, second call is for fgets() which reads the remaining line till it encountered

end of line. Finally, the last call fgets() reads the second line completely.

Binary I/0 Functions

There are two functions, that can be used for binary input and output -

size_t fread(void *ptr, size_t size_of_elements, size_t number_of_elements, FILE *a_file);

size_t fwrite(const void *ptr, size_t size_of_elements, size_t number_of_elements, FILE *a_file)

https://www.tutorialspoint.com/cprogramming/c_file_io.htm

>

4/5

4/1/2020 C - File /O - Tutorialspoint

Both of these functions should be used to read or write blocks of memories - usually arrays or structures.

https://www.tutorialspoint.com/cprogramming/c_file_io.htm 5/5

4/1/2020 C - Preprocessors - Tutorialspoint

C - Preprocessors

The C Preprocessor is not a part of the compiler, but is a separate step in the compilation process. In
simple terms, a C Preprocessor is just a text substitution tool and it instructs the compiler to do required
pre-processing before the actual compilation. We'll refer to the C Preprocessor as CPP.

All preprocessor commands begin with a hash symbol (#). It must be the first nonblank character, and for
readability, a preprocessor directive should begin in the first column. The following section lists down all
the important preprocessor directives -

https://www.tutorialspoint.com/cprogramming/c_preprocessors.htm 117

4/1/2020 C - Preprocessors - Tutorialspoint

Sr.No. Directive & Description

#define

Substitutes a preprocessor macro.

2 #include

Inserts a particular header from another file.
3 #undef

Undefines a preprocessor macro.
4 #ifdef

Returns true if this macro is defined.
° #ifndef

Returns true if this macro is not defined.
6 #if

Tests if a compile time condition is true.
! #else

The alternative for #if.
8 #elif

#else and #if in one statement.
o #endif

Ends preprocessor conditional.
10

#error

Prints error message on stderr.

1 #pragma

Issues special commands to the compiler, using a standardized method.

https://www.tutorialspoint.com/cprogramming/c_preprocessors.htm 2/7

4/1/2020 C - Preprocessors - Tutorialspoint

Preprocessors Examples

Analyze the following examples to understand various directives.

#define MAX_ARRAY_LENGTH 20
This directive tells the CPP to replace instances of MAX_ARRAY_LENGTH with 20. Use #define for
constants to increase readability.

#include <stdio.h>
#include "myheader.h"

These directives tell the CPP to get stdio.h from System Libraries and add the text to the current source
file. The next line tells CPP to get myheader.h from the local directory and add the content to the current
source file.

#undef FILE_SIZE
#define FILE_SIZE 42

It tells the CPP to undefine existing FILE_SIZE and define it as 42.

#ifndef MESSAGE
#define MESSAGE "You wish!"
#endif

It tells the CPP to define MESSAGE only if MESSAGE isn't already defined.

#1fdef DEBUG
/* Your debugging statements here */
#endif

It tells the CPP to process the statements enclosed if DEBUG is defined. This is useful if you pass the -
DDEBUG flag to the gcc compiler at the time of compilation. This will define DEBUG, so you can turn
debugging on and off on the fly during compilation.

Predefined Macros

ANSI C defines a number of macros. Although each one is available for use in programming, the
predefined macros should not be directly modified.

https://www.tutorialspoint.com/cprogramming/c_preprocessors.htm 317

4/1/2020

Sr.No.

Let's try

#inclu
int ma

pri
pri
pri
pri
pri

When the above code in a file test.c is compiled and executed, it produces the following result -

File
Date
Time
Line
ANSI

C - Preprocessors - Tutorialspoint

Macro & Description

__DATE__

The current date as a character literal in "MMM DD YYYY" format.

__TIME__

The current time as a character literal in "HH:MM:SS" format.

__FILE__

This contains the current filename as a string literal.

__LINE__

This contains the current line number as a decimal constant.

__STDC__

Defined as 1 when the compiler complies with the ANSI standard.

the following example -

de <stdio.h>

in() {

ntf("File :%s\n", __ FILE__);
ntf("Date :%s\n", _ DATE__);
ntf("Time :%s\n", _ TIME__);
ntf("Line :%d\n", __LINE__);
ntf("ANSI :%d\n", __ STDC__);

(test.c
:Jun 2 2012
103:36:24
]

11

Preprocessor Operators

https://www.tutorialspoint.com/cprogramming/c_preprocessors.htm

417

4/1/2020

C - Preprocessors - Tutorialspoint
The C preprocessor offers the following operators to help create macros -

The Macro Continuation (\) Operator

A macro is normally confined to a single line. The macro continuation operator (\) is used to continue a
macro that is too long for a single line. For example -

#define message_for(a, b) \

printf(#a " and " #b ": We Love youl!\n")

The Stringize (#) Operator

The stringize or number-sign operator ('#'), when used within a macro definition, converts a macro

parameter into a string constant. This operator may be used only in a macro having a specified argument
or parameter list. For example -

#include <stdio.h>

#define message_for(a, b) \

printf(#a " and " #b ": We Llove you!/\n")

int main(void) {

message_for(Carole, Debra);
return 0O;

When the above code is compiled and executed, it produces the following result —

Carole and Debra: We love you!

The Token Pasting (##) Operator

The token-pasting operator (##) within a macro definition combines two arguments. It permits two
separate tokens in the macro definition to be joined into a single token. For example -

#include <stdio.h>

#define tokenpaster(n) printf ("token" #n " = %d", token#i#n)

int main(void) {
int token34 = 40;

tokenpaster(34);
return 0;

When the above code is compiled and executed, it produces the following result —

https://www.tutorialspoint.com/cprogramming/c_preprocessors.htm

5/7

4/1/2020 C - Preprocessors - Tutorialspoint

token34 = 40

It happened so because this example results in the following actual output from the preprocessor —

printf ("token34 = %d", token34);

This example shows the concatenation of token##n into token34 and here we have used both stringize
and token-pasting.

The Defined() Operator

The preprocessor defined operator is used in constant expressions to determine if an identifier is defined
using #define. If the specified identifier is defined, the value is true (non-zero). If the symbol is not defined,
the value is false (zero). The defined operator is specified as follows -

#include <stdio.h>

#if !defined (MESSAGE)
#define MESSAGE "You wish!"
#endif

int main(void) {
printf("Here is the message: %s\n", MESSAGE);
return 0;

When the above code is compiled and executed, it produces the following result -

Here is the message: You wish!

Parameterized Macros

One of the powerful functions of the CPP is the ability to simulate functions using parameterized macros.
For example, we might have some code to square a number as follows -

int square(int x) {
return x * x;

We can rewrite above the code using a macro as follows -
#define square(x) ((x) * (x))
Macros with arguments must be defined using the #define directive before they can be used. The

argument list is enclosed in parentheses and must immediately follow the macro name. Spaces are not
allowed between the macro name and open parenthesis. For example -

https://www.tutorialspoint.com/cprogramming/c_preprocessors.htm 6/7

4/1/2020 C - Preprocessors - Tutorialspoint

#include <stdio.h>

#define MAX(x,y) ((x) > (y) ? (x) : (y))

int main(void) {
printf("Max between 20 and 10 is %d\n", MAX(10, 20));
return 0;

When the above code is compiled and executed, it produces the following result —

Max between 20 and 10 is 20

https://www.tutorialspoint.com/cprogramming/c_preprocessors.htm

717

4/1/2020 C - Header Files - Tutorialspoint

C - Header Files

A header file is a file with extension .h which contains C function declarations and macro definitions to be
shared between several source files. There are two types of header files: the files that the programmer
writes and the files that comes with your compiler.

You request to use a header file in your program by including it with the C preprocessing directive
#include, like you have seen inclusion of stdio.h header file, which comes along with your compiler.

Including a header file is equal to copying the content of the header file but we do not do it because it will
be error-prone and it is not a good idea to copy the content of a header file in the source files, especially if
we have multiple source files in a program.

A simple practice in C or C++ programs is that we keep all the constants, macros, system wide global
variables, and function prototypes in the header files and include that header file wherever it is required.

Include Syntax

Both the user and the system header files are included using the preprocessing directive #include. It has
the following two forms -

#include <file>

This form is used for system header files. It searches for a file named *file' in a standard list of system
directories. You can prepend directories to this list with the -l option while compiling your source code.

#include "file"

This form is used for header files of your own program. It searches for a file named 'file' in the directory
containing the current file. You can prepend directories to this list with the -I option while compiling your
source code.

Include Operation

The #include directive works by directing the C preprocessor to scan the specified file as input before
continuing with the rest of the current source file. The output from the preprocessor contains the output
already generated, followed by the output resulting from the included file, followed by the output that
comes from the text after the #include directive. For example, if you have a header file header.h as
follows -

char *test (void);

and a main program called program.c that uses the header file, like this —

https://www.tutorialspoint.com/cprogramming/c_header_files.htm 113

4/1/2020 C - Header Files - Tutorialspoint

int x;
#include "header.h"

int main (void) {
puts (test ());

the compiler will see the same token stream as it would if program.c read.

int x;
char *test (void);

int main (void) {
puts (test ());

Once-Only Headers

If a header file happens to be included twice, the compiler will process its contents twice and it will result

in an error. The standard way to prevent this is to enclose the entire real contents of the file in a
conditional, like this —

#ifndef HEADER_FILE
#define HEADER_FILE

the entire header file file

#endif

This construct is commonly known as a wrapper #ifndef. When the header is included again, the
conditional will be false, because HEADER_FILE is defined. The preprocessor will skip over the entire
contents of the file, and the compiler will not see it twice.

Computed Includes

Sometimes it is necessary to select one of the several different header files to be included into your
program. For instance, they might specify configuration parameters to be used on different sorts of
operating systems. You could do this with a series of conditionals as follows -

#1f SYSTEM_1

include "system 1.h"
#elif SYSTEM_ 2

include "system 2.h"
#elif SYSTEM_3

#endif

https://www.tutorialspoint.com/cprogramming/c_header_files.htm 2/3

4/1/2020 C - Header Files - Tutorialspoint

But as it grows, it becomes tedious, instead the preprocessor offers the ability to use a macro for the
header name. This is called a computed include. Instead of writing a header name as the direct
argument of #include, you simply put a macro name there -

#tdefine SYSTEM_H "system_1.h"

#include SYSTEM_H

SYSTEM_H will be expanded, and the preprocessor will look for system_1.h as if the #include had been
written that way originally. SYSTEM_H could be defined by your Makefile with a -D option.

https://www.tutorialspoint.com/cprogramming/c_header_files.htm 3/3

4/1/2020 C - Type Casting - Tutorialspoint

C - Type Casting

Converting one datatype into another is known as type casting or, type-conversion. For example, if you
want to store a 'long' value into a simple integer then you can type cast 'long' to 'int'. You can convert the
values from one type to another explicitly using the cast operator as follows -

(type_name) expression

Consider the following example where the cast operator causes the division of one integer variable by
another to be performed as a floating-point operation -

#include <stdio.h>

main() {

int sum = 17, count = 5;
double mean;

mean = (double) sum / count;
printf("Value of mean : %f\n", mean);

When the above code is compiled and executed, it produces the following result -
Value of mean : 3.400000

It should be noted here that the cast operator has precedence over division, so the value of sum is first
converted to type double and finally it gets divided by count yielding a double value.

Type conversions can be implicit which is performed by the compiler automatically, or it can be specified
explicitly through the use of the cast operator. It is considered good programming practice to use the cast
operator whenever type conversions are necessary.

Integer Promotion

Integer promotion is the process by which values of integer type "smaller" than int or unsigned int are
converted either to int or unsigned int. Consider an example of adding a character with an integer -

#include <stdio.h>

main() {

https://www.tutorialspoint.com/cprogramming/c_type_casting.htm

13

4/1/2020 C - Type Casting - Tutorialspoint

int i = 17;
char ¢ = 'c'; /* ascii value is 99 */
int sum;

sum = i + c;
printf("Value of sum : %d\n", sum);

When the above code is compiled and executed, it produces the following result —

Value of sum : 116

Here, the value of sum is 116 because the compiler is doing integer promotion and converting the value of
'c' to ASCII before performing the actual addition operation.

Usual Arithmetic Conversion

The usual arithmetic conversions are implicitly performed to cast their values to a common type. The
compiler first performs integer promotion; if the operands still have different types, then they are converted
to the type that appears highest in the following hierarchy -

long double

f

double
float
unsigned long long
long long
unsigned long
long

unsigned int

!

int

https://www.tutorialspoint.com/cprogramming/c_type_casting.htm 2/3

4/1/2020 C - Type Casting - Tutorialspoint

The usual arithmetic conversions are not performed for the assignment operators, nor for the logical
operators && and ||. Let us take the following example to understand the concept -

#include <stdio.h>
main() {
int i = 17;
char ¢ = 'c'; /* ascii value is 99 */

float sum;

sum = i + c;
printf("value of sum : %f\n", sum);

When the above code is compiled and executed, it produces the following result —

Value of sum : 116.000000

Here, it is simple to understand that first c gets converted to integer, but as the final value is double, usual
arithmetic conversion applies and the compiler converts i and c into 'float' and adds them yielding a 'float’
result.

https://www.tutorialspoint.com/cprogramming/c_type_casting.htm 3/3

4/1/2020 C - Recursion - Tutorialspoint

C - Recursion

Recursion is the process of repeating items in a self-similar way. In programming languages, if a program
allows you to call a function inside the same function, then it is called a recursive call of the function.

void recursion() {
recursion(); /* function calls itself */

int main() {
recursion();

The C programming language supports recursion, i.e., a function to call itself. But while using recursion,
programmers need to be careful to define an exit condition from the function, otherwise it will go into an
infinite loop.

Recursive functions are very useful to solve many mathematical problems, such as calculating the
factorial of a number, generating Fibonacci series, etc.

Number Factorial

The following example calculates the factorial of a given number using a recursive function -

#include <stdio.h>
unsigned long long int factorial(unsigned int i) {
if(i <=1) {

return 1;

}

return i * factorial(i - 1);

int main() {
int i = 12;
printf("Factorial of %d is %d\n", i, factorial(i));
return 0;

When the above code is compiled and executed, it produces the following result —

Factorial of 12 is 479001600

https://www.tutorialspoint.com/cprogramming/c_recursion.htm 112

4/1/2020 C - Recursion - Tutorialspoint

Fibonacci Series

The following example generates the Fibonacci series for a given number using a recursive function -

#include <stdio.h>
int fibonacci(int i) {
if(i == 09) {

return 0;

if(i ==1) {
return 1;

}

return fibonacci(i-1) + fibonacci(i-2);

int main() {
int i;
for (1 =90; i < 10; i++) {

printf("%d\t\n", fibonacci(i));

return 0;

When the above code is compiled and executed, it produces the following result —

https://www.tutorialspoint.com/cprogramming/c_recursion.htm 2/2

4/1/2020 C - Variable Arguments - Tutorialspoint

C - Variable Arguments

Sometimes, you may come across a situation, when you want to have a function, which can take variable
number of arguments, i.e., parameters, instead of predefined number of parameters. The C programming
language provides a solution for this situation and you are allowed to define a function which can accept
variable number of parameters based on your requirement. The following example shows the definition of
such a function.

int func(int, ...) {

}

int main() {
func(1, 2, 3);
func(1, 2, 3, 4);

It should be noted that the function func() has its last argument as ellipses, i.e. three dotes (...) and the
one just before the ellipses is always an int which will represent the total number variable arguments
passed. To use such functionality, you need to make use of stdarg.h header file which provides the
functions and macros to implement the functionality of variable arguments and follow the given steps -

. Define a function with its last parameter as ellipses and the one just before the ellipses is always
an int which will represent the number of arguments.

- Create a va_list type variable in the function definition. This type is defined in stdarg.h header
file.

. Use int parameter and va_start macro to initialize the va_list variable to an argument list. The
macro va_start is defined in stdarg.h header file.

. Use va_arg macro and va_list variable to access each item in argument list.
. Use a macro va_end to clean up the memory assigned to va_list variable.

Now let us follow the above steps and write down a simple function which can take the variable number of
parameters and return their average -

#include <stdio.h>
#include <stdarg.h>

double average(int num,...) {

va_list valist;
double sum = 0.0;

https://www.tutorialspoint.com/cprogramming/c_variable_arguments.htm

1/2

4/1/2020 C - Variable Arguments - Tutorialspoint
int i;

/* initialize valist for num number of arguments */
va_start(valist, num);

/* access all the arguments assigned to valist */
for (i = 0; i < num; i++) {
sum += va_arg(valist, int);

/* clean memory reserved for valist */
va_end(valist);
return sum/num;

int main() {

printf("Average of 2, 3, 4, 5 = %f\n", average(4, 2,3,4,5));
printf("Average of 5, 10, 15 = %f\n", average(3, 5,10,15));

When the above code is compiled and executed, it produces the following result. It should be noted that
the function average() has been called twice and each time the first argument represents the total number
of variable arguments being passed. Only ellipses will be used to pass variable number of arguments.

Average of 2, 3, 4, 5 = 3.500000
Average of 5, 10, 15 = 10.000000

https://www.tutorialspoint.com/cprogramming/c_variable_arguments.htm

22

4/1/2020 C - Memory Management - Tutorialspoint

C - Memory Management

This chapter explains dynamic memory management in C. The C programming language provides several
functions for memory allocation and management. These functions can be found in the <stdlib.h> header
file.

Sr.No. Function & Description

void *calloc(int num, int size);

This function allocates an array of num elements each of which size in bytes will be size.

2 void free(void *address);

This function releases a block of memory block specified by address.
3 void *malloc(int num);

This function allocates an array of num bytes and leave them uninitialized.
4

void *realloc(void *address, int newsize);

This function re-allocates memory extending it upto newsize.

Allocating Memory Dynamically

While programming, if you are aware of the size of an array, then it is easy and you can define it as an
array. For example, to store a name of any person, it can go up to a maximum of 100 characters, so you
can define something as follows -

char name[100];

But now let us consider a situation where you have no idea about the length of the text you need to store,
for example, you want to store a detailed description about a topic. Here we need to define a pointer to
character without defining how much memory is required and later, based on requirement, we can allocate
memory as shown in the below example -

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

int main() {

https://www.tutorialspoint.com/cprogramming/c_memory_management.htm 113

4/1/2020 C - Memory Management - Tutorialspoint

char name[100];
char *description;

strcpy(name, "Zara Ali");

/* allocate memory dynamically */
description = malloc(200 * sizeof(char));

if(description == NULL) {

fprintf(stderr, "Error - unable to allocate required memory\n");
} else {

strcpy(description, "Zara ali a DPS student in class 10th");

printf(“Name = %s\n", name);
printf("Description: %s\n", description);

When the above code is compiled and executed, it produces the following result.

Name = Zara Ali
Description: Zara ali a DPS student in class 10th

Same program can be written using calloc(); only thing is you need to replace malloc with calloc as
follows -

calloc(200, sizeof(char));

So you have complete control and you can pass any size value while allocating memory, unlike arrays
where once the size defined, you cannot change it.

Resizing and Releasing Memory

When your program comes out, operating system automatically release all the memory allocated by your
program but as a good practice when you are not in need of memory anymore then you should release
that memory by calling the function free().

Alternatively, you can increase or decrease the size of an allocated memory block by calling the function
realloc(). Let us check the above program once again and make use of realloc() and free() functions -

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

int main() {
char name[100];

char *description;

https://www.tutorialspoint.com/cprogramming/c_memory_management.htm

2/3

4/1/2020

When the above code is compiled and executed, it produces the following result.

C - Memory Management - Tutorialspoint

strcpy(name, "Zara Ali");

/* allocate memory dynamically */
description = malloc(30 * sizeof(char));

if(description == NULL) {

fprintf(stderr, "Error - unable to allocate required memory\n");
} else {

strcpy(description, "Zara ali a DPS student.");

/* suppose you want to store bigger description */
description = realloc(description, 100 * sizeof(char));

if(description == NULL) {

fprintf(stderr, "Error - unable to allocate required memory\n");
} else {

strcat(description, "She is in class 10th");

printf("Name = %s\n", name);

printf("Description: %s\n", description);

/* release memory using free() function */
free(description);

Name = Zara Ali
Description: Zara ali a DPS student.She is in class 10th

You can try the above example without re-allocating extra memory, and strcat() function will give an error

due to lack of available memory in description.

https://www.tutorialspoint.com/cprogramming/c_memory_management.htm

3/3

4/1/2020 C - Command Line Arguments - Tutorialspoint

C - Command Line Arguments

It is possible to pass some values from the command line to your C programs when they are executed.
These values are called command line arguments and many times they are important for your program
especially when you want to control your program from outside instead of hard coding those values inside
the code.

The command line arguments are handled using main() function arguments where argc refers to the
number of arguments passed, and argv[] is a pointer array which points to each argument passed to the
program. Following is a simple example which checks if there is any argument supplied from the
command line and take action accordingly -

#include <stdio.h>
int main(int argc, char *argv[]) {

if(argc == 2) {
printf("The argument supplied is %s\n", argv[1]);

}
else if(argc > 2) {
printf("Too many arguments supplied.\n");

}
else {
printf("One argument expected.\n");

When the above code is compiled and executed with single argument, it produces the following result.

$./a.out testing
The argument supplied is testing

When the above code is compiled and executed with a two arguments, it produces the following result.

$./a.out testingl testing2
Too many arguments supplied.

When the above code is compiled and executed without passing any argument, it produces the following
result.

$./a.out
One argument expected

It should be noted that argv[0] holds the name of the program itself and argv[1] is a pointer to the first
command line argument supplied, and *argv[n] is the last argument. If no arguments are supplied, argc

https://www.tutorialspoint.com/cprogramming/c_command_line_arguments.htm 112

4/1/2020 C - Command Line Arguments - Tutorialspoint
will be one, and if you pass one argument then argc is set at 2.

You pass all the command line arguments separated by a space, but if argument itself has a space then
you can pass such arguments by putting them inside double quotes "" or single quotes ". Let us re-write
above example once again where we will print program name and we also pass a command line
argument by putting inside double quotes -

#include <stdio.h>
int main(int argc, char *argv[]) {
printf("Program name %s\n", argv[e]);

if(argc == 2) {

printf("The argument supplied is %s\n", argv[1]);
}
else if(argc > 2) {

printf("Too many arguments supplied.\n");

}

else {
printf("One argument expected.\n");

When the above code is compiled and executed with a single argument separated by space but inside
double quotes, it produces the following result.

$./a.out "testingl testing2"

Progranm name ./a.out
The argument supplied is testingl testing2

https://www.tutorialspoint.com/cprogramming/c_command_line_arguments.htm 2/2

Dicita
Skills

Academy

Introduction to Files and Folders

In this course we will look at how to store and organise files (such as
letters, pictures or music tracks) on your computer.

Creéfte

Opportunities

People - Business - Property

Introduction to Files and Folders

Lesson 1. The Basics of File Storage

All the documents and software saved on the computer are stored as individual files.
Files are the basic unit of storage.

Each computer will hold thousands of files - therefore, to make it easier to find and
keep track of your files, you can group them together in folders.

Definitions

File - the computer’s basic unit of information storage. Everything on a computer
is stored as a file of one type or another. You can usually think of a file as a
single document which can be several pages long, or as an individual item. Most
files are represented by a sheet of paper with the corner folded over.

Here are some examples of files and the icons that represent them:

e a typed letter created in Microsoft Word @

B0 x 450

¢ a photograph transferred from a digital camera Eien Lamand
t *| IPEG Image

Folder - something that can contain files. You can put files into folders to
group them together, making them easier to find. A folder is represented by
P a yellow folder icon.

o L banies Sub-folder - a folder inside another folder. The diagram here
= Documents shows that Windows 7 stores most of its folders in an area
“| My Documents called Libraries. In the Libraries area there can be found
Public Documents other Default Folders which are used to store various types

@ Music of file. For instance the Documents folder is the main folder
B My Music and holds other folders such as the My Documents folder, the
Public Music My Music folder, the Pictures folder and the Videos folder

which are all sub-folders of the Documents folder. Sub
folders sit below and to the right of the folder they are stored
in (as can be seen in the diagram)

4 Music (NGALACTICA)
|=| Pictures

B videos

2| Page Digital Skills Academy 2014

Introduction

to Files and Folders

Note: With files and folders you have to double click to open them up, clicking
once will only highlight them, unlike when you are on the internet you only

need to click once.

There are several ways to access Windows 7 Libraries folders on a computer and
you are best to learn all methods, as computers can be setup differently especially

public computers.

Libraries Icon on the Taskbar

3[Getting Started

@ Windows Media Center
Cal

Documents
Calculator

Pictures
Sticky Notes

Music
(% Snipping Tool

Games

,q:_,) Paint

% Remote Desktop Connection
@,’ Magnifier

Computer

Control Panel

Devices and Printers

'l Solitaire
&y |

Default Programs

Help and Support
» Al Programs

| Search programs and files Shut down || ¥

3|Page Digital

Clicking on any on these will
take you to Libraries, but on
the specific folder in Libraries.

e Documents
e Pictures

e Music

o Computer

Unfortunately the Start Menu
Can be modified and look
different, and in some cases
may not even be there.

You can also do a search for
Libraries or any folder using

Search Programs and Files

Skills Academy 2014

Introduction to Files and Folders

1. Use one of the above methods described before and you will eventually

come to Libraries.

- Favorites
Bl Desktop
5 Recent Places
%% Dropbox
4. Downloads

= Libraries
@ Documents

JT Music

|| Pictures

E Videos

#d Homegroup

M Computer
& os
== JAMES 5TICK (F:)

4 items

»

m

STE] X]
GQ |.ﬁ Ui - |i’rf| | Search Libraries e
Organize = Mew library EE ~ [@

Libraries

Open a library to see your files and arrange them by folder, date, and othe...

—_

& Documents

ﬂ Library
i! Music
Library

H'"'"\-_/)

[Pictures
““:‘i_;? Library

n Videos
s Library

2. Click on Documents to view what’s in the documents folder.

3. Then Click on Pictures, you will notice that the right window pane changes
to what is now in the Pictures folder.

4| Page

Digital Skills Academy 2014

Introduction to Files and Folders

4. Navigate to Computer in Libraries, Computer shows your storage devices in,
or attached to your computer.

Hard Disk Drives: Shows the Hard Disk Drives you have in your computer this is
where all your data is stored, and even Windows Operating System itself.

@Qvl;? » Computer »

Organize v System properties Uhinstall or change a program Map network drive Open Control Panel

L,

W Faverites 4 a’rd Disk Drives (1)

B Desktop Qsi(C)

2| Recent Places ga/ - |
167 GE free of 221 GBE

%# Dropbox
& Downloads 4 Devices with Removable Storage (2)

]

% MEMORYSTICE (F:)
{ DVD RW Drive (D:)

- Libraries ~ o —
e = S 254 GE free of 3,65 GB
j Documents A

J? Music

[&] Pictures

E Videos

ﬂa Homegroup

& Computer
& os(c)
= MEMORYSTICK (F:)

i‘! Metwork

Devices with Removable Storage: Memory Stick: Plugs into USB port on a
Computer.

If you don’t have your own computer the best way
to have your own files to hand is to use a

Memory Stick

Makes using computers so much easier to use and to
know where all you files are.

5|Page Digital Skills Academy 2014

Introduction to Files and Folders

Lesson 2: Saving A File to Documents

Let’s create a Microsoft Word file and save it into Documents

1. First, open Microsoft Word by clicking on the START menu, moving onto All Programs,
then clicking Microsoft Office Folder, then Microsoft Word

2. Type in the following text:

Eiffel Tower
The Louvre

Arc de Triomphe

3. Now save the document - to do this, click on the File menu, then click on Save As.

Wid9-0V &+
Home Insert Page Layout References Mailings Review View

= da Lut Calibri (Body) = 11 ~ A" A7 | Aa~ | B, = - = - %= | £
=5 Cop

Paste = 2 - abz = i

- ¥ Format Painter LA abe x, x cd é = — — = | *5

Clipboard Fl Font u Faragrap

@
Eg}]

Eiffel Tower
The Louvre

Arcde Triomphe

6| Page Digital Skills Academy 2014

Introduction to Files and Folders

4. Look at the Save in box - notice that the computer is going to automatically save the
file into the My Documents folder.

W] Save As |
e e
() [E » Libraries + Documents » ~ [49][Search Documents s
Organize = New folder = - @
(W] MicrosoftWord — Documents library ,
Armange by: Folder ¥
§ Templates Includes: 2 locations
s Favorites 1 i |;\
B Desktop | | L4
%] Recent Places g ¢ \
43 Dropbox 3 ‘ p s ‘ p
18 Downloads Outlook Files Dell WebCam Digital Skills OneNote
Central Academy Notebooks
i Libraries
| Documents B I E E |
B ki x: k I |] T
File name: [IERERE =
Save o5 type: |Word Document -
Authors: Maureen Tags: Addatag
[F] Save Thumbnail
S Hide Folders Tools = Cancel

5. Give the file a name - to do this, click in the File name box, delete the text there and
type in a name for your file.

---||lIlllIllllIllllI---.
guunn® b

¢.Rilg pame: Eiffel Tower .

Save as type: | Word Document

Authors: Maureen Tags: Add a tag

[7] Save Thumbnail

= Hide Folders Tools - Save] ’ Cancel

NOTE: If the file name is already highlighted in blue, you can type the new name
straight over it.

Here, we’ll call the file France.

6. Then click on the Save button.

Notice that the filename, France, now appears in the title bar of the window, once
the file has been saved.

7. Close the France Document | = | -ﬂh down by clicking X top right of the
Screen. Then go and find your France Document in Documents on
the computer through o 9 Libraries.

7| Page Digital Skills Academy 2014

Introduction

to Files and Folders

You can keep files on the same subject together — you do this by making a

folder and putting the files into that folder.

For example, you could create a sub-folder inside the My Documents folder
and call it Business, then keep all your business files in that folder.
Or you could create a folder, called Letters, on your memory stick, then
save all your word-processed letter files into that folder on the stick.

1. Now navigate to Documents, In my Libraries using one of the methods described in

Lesson 1.
2. Click on New Folder
@vv 3 ¢ Libraries » Documents »
guEEENg
Organize = Share with = Burn % Naﬁfulder..,‘
"sngmusns
3. Call the new folder Business and press Enter | | |
Buisn Loa
Open in new window
- II ¥ Moveto Dropbox
Buisness| | [r Share with
cour| &l Shared Folder Synchronization
revie Restore previous versions
B Scan with AVG
This is h'ow. to create a Sub Folder, you can have Send to
folders inside other folders to organise all your @ R
files. In this case you have created a business ",.'Cut ~
folder in documents. Databs “topy’
Create shortcut
4. Right Click on the Business Folder and select Delete
Cut. Rename
. X Open folder location
5. Navigate to your Memory stick under computer
in devices with removable storage and then Properties
double click on your memory stick.
8| Page Digital Skills Academy 2014

Introduction to Files and Folders

6. Now select paste. The Business folder you created in Documents will now have
been cut “deleted” from Documents and then the folder pasted and moved to your
memory stick.

Note: Copy and paste leaves a original copy of the file or folder in effect creating
another copy, Cut will remove and when pasted will delete the original location of
the file. Just like cutting out a picture from a magazine and pasting “gluing” into a
scrapbook

Here, we’ll create a folder on a memory stick, and call it Holidays.

To create a folder on a memory stick:

1. Make sure your memory stick is plugged into the computer - if you have only just plugged
it in, wait for a few seconds for the computer to recognise the memory stick as an
additional drive.

2. The memory stick window should open automatically, showing its contents.

If it does not, then open My Computer by double-clicking on the icon on the desktop.
Next, open your memory stick drive by double-clicking on its icon in the My Computer
window - it may be named Removable Disk (D:) or USB Disk (E:), or similar, or it may
be identified by the brand name of the device.

3. Click on New folder, on the menu bar along the top of the screen.

@UVL— ¢+ Computer » MEMORYSTICK (F:) »

Organize - Share with - Burn ‘:. ewfu:uldet_:'

- Favorites

Bl Desktop r ! |
=l Recent Places Certificate CISCO_CC
%% Dropbox Templates MA,

A new folder icon will appear in the My Computer window.

Type in a name for the folder - here, we’ll call it Holidays.

9| Page Digital Skills Academy 2014

Introduction to Files

and Folders

NOTE: As the folder name is already highlighted in blue, you can type the new name
straight over it.

Holidays|

4. Then press the Enter key to accept the name. When the folder turns blue, the folder
has been created.

5. Close the window.

Next, we’ll look at how to organise our files by saving them into a folder.

Saving a Copy of a File to a folder

Earlier, we saved a Word file, France, in

In the following exercise, we are going to take the France file and save a copy of it into a

folder on a memory stick. Why would you want to do this?

You might want to take the

file away with you to use on another computer - or you may simply want to keep a backup
(second) copy of an important file in a separate place, in case your computer breaks down
and you cannot access the original.

We can use Save As to do this. You have already used Save As when you saved a file for the
very first time, but here you will use Save As to save the file as a copy
in a different place.

To save a copy of a file to a folder:

1.

First, open the France document In Documents you
want to save elsewhere. Then click on the file tab. The
File Tab menu would have now opened up as you can see
you can also print.

Remember if you have saved already then choosing save
will just rewrite over the current file and you will not see
the save as menu coming up to choose a location.

Choose Save as, as we are going to choose a new location
to save it on to your Memory Stick.

Home Insert

= save
Sawe As
L_? Open

,__T Close

Print
Save & Send

Help

] Options

B4 Exit

10| Page Digital Skills Academy 2014

Introduction to Files and Folders

2. Click on your memory stick located under Computer below.

@ Save As =
QU ,; » Libraries » Documents » v l 45 | l Search Documents P
Organize v New folder = v @

J‘ Music A :
_ Documents library a b Foms
| Pictures Includes: 2 locations -
B videos
4 Homegroup l -
/% Computer L | I.
& os@ ,
s Outlook Files Dell WebCam Digital Skills OneNote
e MEMORYSTICK | = Central Academy Notebooks
‘\F Network .
2 Ll | | S
Filename: France v
Save as type: [Word Document ']
Authors: Maureen Tags: Add a tag
[] Save Thumbnail
~ Hide Folders Tools ~ [Save] { Cancel]

1. Then double click Holidays folder click save, your France file will now be in
your holiday’s folder on your memory stick.

Note: One important thing to
out a memory stick you have
Hardware and Eject Media.
with a tick.

remember is that when taking
to use Safely Remove
This is in the form of a USB cable

You will find this on the taskbar bottom right of your screen and is quite small

in the notification
choose your
eject. (=]

@ Open Devices and Printers

Eject USE Flash Drive
- MEMORYSTICK (F:)

area. Then click eject
memory stick and

Wait for the message to pop up, safe to remove hardware. Now remove your

memory stick.

11| Page

Digital Skills Academy 2014

Introduction to Files and Folders

Lesson 4 Attaching Files

. Since we now know all about files and folders this will make it much easier for you
now to able to attach files to emails or for example to upload your CV to a website

Insert your memory stick and the Log in to your emails; go to compose or to create
a new email.

. Look for the paper clip symbol

Or if using Microsoft, Outlook, Hotmail and live click
the paper clip symbol WER IR Ll then files as attachments.

Files as attachments

Pictures inline

Share from Onelrive

We put two sheets of paper together in the real world by using a paperclip; in this
case we are putting an email and a file together.

. When Uploading to a website, the principle is the same but may just have buttons
to click like upload file, choose file, or even just browse which means you are
going to browse your computer to look for the file you want to attach.

. Once clicked a window will open, where you can choose what file to attach to your
emails, this window will always be the same no matter if you’re uploading on a
website or from an email.

Note: This window will only let you attached files you won’t be able to actually
view the file. To view files you have to go through libraries on your actual
computer, for example if you wanted to open up a cover letter and copy and paste
it into your email.

12 | Page Digital Skills Academy 2014

Introduction to Files and Folders

Built in files of the operating system Windows
7, you can navigate to any folder here by using
this pane. For example this has opened up on
pictures “Pictures is highlighted”. But to move
to Documents just click on Documents.

Contents of the folder you are
on, as you can see Pictures is

highlighted in the left pane.

Dpen

o

Q°

"“_j |E| » Libraries » Pictures »

44 | | Search Pictures 2 |

Prganize * Mew folder

Xt Favorites = Pictures library
B Desktop Includes: 2 locations

=] Recent Places
%% Dropbox
4 Downloads

m

. Libraries
3 Documents Sample Pictures
J‘r Music
[5| Pictures

E Videos

N

ﬁa- Homegroup

=~ 0 @

Arrange by: Folder «

Fi

E name:

- [l Files -

| Open | [cance |

Scroll bar: to move to computer you will
have to scroll down and then click on
your memory stick to be able to attach a

file as seen below.

1M Computer

T A
-.‘_ MEMORYSTICK (F:)[%
*

L j
"Ssnppuunnn®

ihj Metwork

-

File name:

~ | AllFiles ~|

| Open | | cCancel |

13| Page Digital Skills Academy 2014

Introduction to Files and Folders

6. In this instance | am going to attach my CV from my Memory Stick as an example.
By double clicking on My CV, alternative way is click once and then to click open to
attach to an email.

E_' Open ﬂ

&)=/ » Computer » MEMORYSTICK (F) v |42 |[search MEMORYSTICK (F) |

Organize * Mew folder =+ O l@

Marme Date modified Type

4o Libraries st
> [E Documents e
> J‘-' Music
I» = Pictures

» E Videos

07/05/2015 10:38 Microsoft Word D

>i@ Homegroup

m

(M Computer
> i 05 (C)
[gy MEMORYSTICK (F)

> 'Fj Metwork

* 4| n 3

File name: My CV ~ | AllFiles - |

| open || cance |

Depending on where your CV is stored let’s, click the paper clip symbol then attached your
Cv.

Summary

The purpose of this exercise was about files, folders and attachments. Practice with this
and attaching files you really will start to understand and work your way around a
computer.

14 | Page Digital Skills Academy 2014

Dicita
Skills

Academy

Introduction to Files and Folders

In this course we will look at how to store and organise files (such as
letters, pictures or music tracks) on your computer.

Crebte

Opportunities

People - Business - Property

Introduction to Files and Folders

Lesson 1. The Basics of File Storage

All the documents and software saved on the computer are stored as individual files.
Files are the basic unit of storage.

Each computer will hold thousands of files - therefore, to make it easier to find and
keep track of your files, you can group them together in folders.

Definitions

File - the computer’s basic unit of information storage. Everything on a computer
is stored as a file of one type or another. You can usually think of a file as a
single document which can be several pages long, or as an individual item. Most
files are represented by a sheet of paper with the corner folded over.

Here are some examples of files and the icons that represent them:

e a typed letter created in Microsoft Word @

a00 x 450

¢ a photograph transferred from a digital camera & Een Lomond
t *1 IPE: Image

Folder - something that can contain files. You can put files into folders to
group them together, making them easier to find. A folder is represented by
’ a yellow folder icon.

j 8 banes Sub-folder - a folder inside another folder. The diagram here
:| Documents shows that Windows 7 stores most of its folders in an area

! ‘| My Documents called Libraries. In the Libraries area there can be found
' Public Documents other Default Folders which are used to store various types
@' Music of file. For instance the Documents folder is the main folder

h J My Music and holds other folders such as the My Documents folder, the
' Public Music My Music folder, the Pictures folder and the Videos folder

. which are all sub-folders of the Documents folder. Sub
4 Music (\\GALACTICA .)
el) folders sit below and to the right of the folder they are stored

b=/ Pictures . . .
= in (as can be seen in the diagram)

B¥ Videos

2| Page Digital Skills Academy 2014

Introduction to Files and Folders

Note: With files and folders you have to double click to open them up, clicking
once will only highlight them, unlike when you are on the internet you only

need to click once.

There are several ways to access Windows 7 Libraries folders on a computer and
you are best to learn all methods, as computers can be setup differently especially

public computers.

Libraries Icon on the Taskbar

Documents

Pictures
Sticky Notes

Music
% Snipping Tool
ol Games
‘.j Paint

Computer
%J) Remote Desktop Connecticn

&!" Magnifier

Control Panel

Devices and Printers

’ Solitaire
—

Default Programs

Help and Support
» All Programs

| Search programs and files

Clicking on any on these will
take you to Libraries, but on
the specific folder in Libraries.

e Documents
e Pictures

e Music

e Computer

Unfortunately the Start Menu
Can be modified and look
different, and in some cases
may not even be there.

You can also do a search for
Libraries or any folder using

Search Programs and Files

3|Page Digital Skills Academy 2014

Introduction to Files and Folders

1. Use one of the above methods described before and you will eventually

come to Libraries.

& Fawvorites
Bl Desktop

5| Recent Places

%3 Dropbox
4. Downloads

. Libraries
@ Documents

J‘i Music

[Pictures

B videos

ﬁaq Homegroup

Lo Computer
& os ()
e JAMES STICK (F)

1 4 items

L3

m

-

[=[E] =]
QQ |ﬁ » Libraries » - ‘ "f | | Search Libraries p |
Organize Mew library =~ 0 @

Libraries

Open a library to see your files and arrange them by folder, date, and othe...

"
= Documents

B Library

Music
w2 Library

Pictures
s Library

Videos
g Library

2. Click on Documents to view what’s in the documents folder.

3. Then Click on Pictures, you will notice that the right window pane changes
to what is now in the Pictures folder.

4 | Page

Digital Skills Academy 2014

Introduction to Files and Folders

4. Navigate to Computer in Libraries, Computer shows your storage devices in,
or attached to your computer.

Hard Disk Drives: Shows the Hard Disk Drives you have in your computer this is
where all your data is stored, and even Windows Operating System itself.

@\\:}vli » Computer »
Organize « System properties Uhinstall or change a program Map network drive Open Control Panel
.7 Favorites 4 H\grd Disk Drives (1)
Pl Desktop 05 (C:)
= Recent Places T —
- %’ 167 GB free of 221 GB
%# Dropbox
& Downloads 4 Devices with Removable Storage (2)
& & MEMORYSTICK (F:)
i Libraries DVD RW Drive (D) - —
L 5&9 SN 254 GE free of 3.65 GB
j Documnents A
J‘l Music
le=| Pictures
H videos
& Homegroup
M Computer
& os(c)
e MEMORYSTICK (F)
ﬁh Network
Devices with Removable Storage: Memory Stick: Plugs into USB port on a
Computer.

If you don’t have your own computer the best way
to have your own files to hand is to use a
Memory Stick

Makes using computers so much easier to use and to
know where all you files are.

5|Page Digital Skills Academy 2014

Introduction to Files and Folders

Lesson 2: Saving A File to Documents

Let’s create a Microsoft Word file and save it into Documents

1. First, open Microsoft Word by clicking on the START menu, moving onto All Programs,

then clicking Microsoft Office Folder, then Microsoft Word

2. Type in the following text:

Eiffel Tower
The Louvre

Arc de Triomphe

3. Now save the document - to do this, click on the File menu, then click on Save As.

Wikdw-O6 T &=
Home Insert

Page Layout References Mailings Review View

s Calibri Body) 11+ A A | Aav | B = - iZ - Ee
534 Cop

Paste - = -7 . AL == == =
- jFormat Painter B I U abe x, x — el = = = =
Clipboard] Font Fl Faragrap
El 2 |E1 1 [~ 117 I
| | 1

Eiffel Tower
The Louvre

Arcde Triomphe

6| Page

Digital Skills Academy 2014

Introduction to Files and Folders

4. Look at the Save in box - notice that the computer is going to automatically save the
file into the My Documents folder.

(W] Save As |
—~N = i
e [[5» Libraries » Documents » [43 |[Search »
Organize v New folder =5 @
(@] MicrosoftWord — Documents library AR FoliE
Templates Includes: 2 locations
¢ Favorites i E
Bl Desktop i |
%] Recent Places |
%3 Dropbox F L . {I!
& Downloads Outlook Files Dell WebCam Digital Skills OneNote
Central Academy Notebooks
4 Libraries
) \Pocuments g l E I E ¥
B M b L | E A 5
File name: &
Save as type: | Word Document -
Authors: Maureen Tags: Add atag
[F] Save Thumbnail

5. Give the file a name - to do this, click in the File name box, delete the text there and
type in a name for your file.

Gl pame: Eiffel Tower

e
LA N NN ---....-Il

Save as type: | Word Document -
Authors: Maureen Tags: Add a tag
[] Save Thumbnail
&) Hide Folders Tools - Save] [Cancel

NOTE: If the file name is already highlighted in blue, you can type the new name
straight over it.

Here, we’ll call the file France.

6. Then click on the Save button.

Notice that the filename, France, now appears in the title bar of the window, once
the file has been saved.

7. Close the France Document | = | [2%l down by clicking X top right of the
Screen. Then go and find your France Document in Documents on
the computer through s 9 Libraries.

7| Page Digital Skills Academy 2014

Introduction to Files and Folders

You can keep files on the same subject together — you do this by making a
folder and putting the files into that folder.

For example, you could create a sub-folder inside the My Documents folder
and call it Business, then keep all your business files in that folder.
Or you could create a folder, called Letters, on your memory stick, then
save all your word-processed letter files into that folder on the stick.

1. Now navigate to Documents, In my Libraries using one of the methods described in
Lesson 1.

2. Click on New Folder

| = | z=| » Libraries » Documents »
€IS

. i gpmEREEN,,
Organize * Share with - Burn % Mew folder ¢
a

3. Call the new folder Business and press Enter
| i |

Buizn L=

Open in new window

I %% Move to Dropbox

Buisnes| | ; r Share with

courl Bl Shared Folder Synchronization

revig Restore previous versions

B Scan with AVG

This is how to create a Sub Folder, you can have Send to
folders inside other folders to organise all your @
files. In this case you have created a business ",.Cut 5
folder in documents. Databs "Topy

Create shortcut

4. Right Click on the Business Folder and select Delete

Cut. Rename

Open folder location

5. Navigate to your Memory stick under computer
in devices with removable storage and then Properties

double click on your memory stick.

8| Page Digital Skills Academy 2014

Introduction to Files and Folders

6. Now select paste. The Business folder you created in Documents will now have
been cut “deleted” from Documents and then the folder pasted and moved to your
memory stick.

Note: Copy and paste leaves a original copy of the file or folder in effect creating

another copy, Cut will remove and when pasted will delete the original location of
the file. Just like cutting out a picture from a magazine and pasting “gluing” into a
scrapbook

Here, we’ll create a folder on a memory stick, and call it Holidays.

To create a folder on a memory stick:

1. Make sure your memory stick is plugged into the computer - if you have only just plugged
it in, wait for a few seconds for the computer to recognise the memory stick as an
additional drive.

2. The memory stick window should open automatically, showing its contents.

If it does not, then open My Computer by double-clicking on the icon on the desktop.
Next, open your memory stick drive by double-clicking on its icon in the My Computer
window - it may be named Removable Disk (D:) or USB Disk (E:), or similar, or it may
be identified by the brand name of the device.

3. Click on New folder, on the menu bar along the top of the screen.

@Q*L— » Computer » MEMORYSTICK (F) »

FELLLLLET TS

Organize = Share with = Burn ':.I'.'-J@Nfculdeg_:'

. Favorites

Bl Desktop r] |
&l Recent Places Certificate CISCO_CC
%# Dropbox Templates MA

A new folder icon will appear in the My Computer window.

Type in a name for the folder - here, we’ll call it Holidays.

9| Page Digital Skills Academy 2014

Introduction to Files

and Folders

NOTE: As the folder name is already highlighted in blue, you can type the new name
straight over it.

Holidays|

4. Then press the Enter key to accept the name. When the folder turns blue, the folder
has been created.

5. Close the window.

Next, we’ll look at how to organise our files by saving them into a folder.

Saving a Copy of a File to a folder

Earlier, we saved a Word file, France, in

In the following exercise, we are going to take the France file and save a copy of it into a

folder on a memory stick. Why would you want to do this?

You might want to take the

file away with you to use on another computer - or you may simply want to keep a backup
(second) copy of an important file in a separate place, in case your computer breaks down
and you cannot access the original.

We can use Save As to do this. You have already used Save As when you saved a file for the
very first time, but here you will use Save As to save the file as a copy
in a different place.

To save a copy of a file to a folder:

1.

10 | Page

First, open the France document In Documents you
want to save elsewhere. Then click on the file tab. The
File Tab menu would have now opened up as you can see
you can also print.

Remember if you have saved already then choosing save
will just rewrite over the current file and you will not see
the save as menu coming up to choose a location.

Choose Save as, as we are going to choose a new location
to save it on to your Memory Stick.

Home Insert

= save
B save As
,j Cpen

,__T Close

Recent

MNew

Print

Save & Send

Help

] Options

Ed et

Digital Skills Academy 2014

Introduction to Files and Folders

2. Click on your memory stick located under Computer below.

(W] Save As L=
- - <) » Libraries » Documents » v|¢ | [search Documents ol
a2 (L ibraries ocuments 4 || Search Documents
Organize v New folder =) v (7]
@' Music = :
: Documents library e by ok
i Pictures Includes: 2 locations 2
¥ videos
«3 Homegroup | E [-
! (‘
1% Computer | g || . II'
& 05 (C: ’ ’
&- () | Outlook Files Dell WebCam Digital Skills OneNote
e MEMORYSTICK | = Central Academy Notebooks
€l Network ‘ E
- R | | Rl
File name: France =
Save as type: [Word Document 'J
Authors: Maureen Tags: Add atag
[] Save Thumbnail
~ ' Hide Folders Tools ~ [Save] [Cancel]

1. Then double click Holidays folder click save, your France file will now be in
your holiday’s folder on your memory stick.

Note: One important thing to
out a memory stick you have
Hardware and Eject Media.
with a tick.

remember is that when taking
to use Safely Remove
This is in the form of a USB cable

You will find this on the taskbar bottom right of your screen and is quite small

in the notification
choose your

eject. =

@ Open Devices and Printers

Eject USE Flash Drive
- MEMORYSTICK (F:)

area. Then click eject
memory stick and

Wait for the message to pop up, safe to remove hardware. Now remove your

memory stick.

11| Page

Digital Skills Academy 2014

Introduction to Files and Folders

Lesson 4 Attaching Files

Since we now know all about files and folders this will make it much easier for you
now to able to attach files to emails or for example to upload your CV to a website

Insert your memory stick and the Log in to your emails; go to compose or to create
a new email.

Look for the paper clip symbol

Or if using Microsoft, Outlook, Hotmail and live click
the paper clip symbol LS Ll el then files as attachments.

Files as attachments

Pictures inline

Share from OneDrive

We put two sheets of paper together in the real world by using a paperclip; in this
case we are putting an email and a file together.

. When Uploading to a website, the principle is the same but may just have buttons

to click like upload file, choose file, or even just browse which means you are
going to browse your computer to look for the file you want to attach.

Once clicked a window will open, where you can choose what file to attach to your
emails, this window will always be the same no matter if you’re uploading on a
website or from an email.

Note: This window will only let you attached files you won’t be able to actually
view the file. To view files you have to go through libraries on your actual
computer, for example if you wanted to open up a cover letter and copy and paste
it into your email.

12 | Page Digital Skills Academy 2014

Introduction to Files and Folders

Built in files of the operating system Windows
7, you can navigate to any folder here by using
this pane. For example this has opened up on
pictures “Pictures is highlighted”. But to move
to Documents just click on Documents.

Contents of the folder you are
on, as you can see Pictures is
highlighted in the left pane.

Dipen

F
—
erPlas |E| v Libraries » Pictures »

++ | | Search Pictures 0 |

Prganize = MNew folder

X Favorites ~ Pictures library
BE Desktop Includes: 2 locations

= Recent Places
%% Dropbox

4 Downloads

m

= Libraries
3 Documents Sample Pictures
Gj‘. Music
=| Pictures r

E Videos

*&) Homegroup

=~ 0 @

Arrange by: Folder =

F

E names

~ | Al Files -

| Open | | cancel |

Scroll bar: to move to computer you will
have to scroll down and then click on
your memory stick to be able to attach a

file as seen below.

L

M Computer

&S .,
-"_ MEMORYSTICK (F:)[&

L J
"Ssngpmmnnnt?

‘Fj Metwork

-

File names

> |AllFiles v|

| Open | [conce |

—

13| Page Digital Skills Academy 2014

Introduction to Files and Folders

6. In this instance | am going to attach my CV from my Memory Stick as an example.
By double clicking on My CV, alternative way is click once and then to click open to

attach to an email.

& Open

=X

@Qv|_ » Computer » MEMORYSTICK (F:) » [42 |[search MEMORYSTICK (Fy) ol

Organize « Mew folder

-

4 - Libraries o
v My cv
+ j Documents ~ Ttttieaniaeeset

+ J? Music
» el Pictures
- B Videos

* ¥ Homegroup

m

4 1M Computer
> &, 05 (C)
b o MEMORYSTICK (F:)

=« 0 @

Date modified Type

.
0

07/05/2015 10:38 Microsoft Word D

o
.

>?¥ Metwork ~ | I

1 3

File name: My CV

~ | AllFiles -|

| Open | | cancel |

Depending on where your CV is stored
CVv.

let’s, click the paper clip symbol then attached your

Summary

The purpose of this exercise was about files, folders and attachments. Practice with this
and attaching files you really will start to understand and work your way around a

computer.

14 | Page

Digital Skills Academy 2014

